• 2022-06-19
    试用 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 变换的性质求下列序列的 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 变换 [tex=1.929x1.357]41/0nyx2Fl2ibFB6g3arhw==[/tex]。[br][/br][tex=7.429x1.357]ewLgsNzwK3CCMSWHiKyTO5WGwhXRksMNqy+jeUTep1M=[/tex]
  • [tex=14.143x1.357]ewLgsNzwK3CCMSWHiKyTO6DI/unzNZ0VeIVEfUi2WShjHpD8TdqX9yyjX7GDMl1fxL5lyQDXAEJxKhOey6gadQ==[/tex][br][/br]因[tex=6.571x2.214]Mr48OpWXEx9Mai0pn1eIktPIsz8zCLIE7QwJB9hxkWAz+y0PjcFyi3lINY9S3e6g[/tex], 由 [tex=0.5x0.786]C7x+w8+jOPZzxFrGGne6Dw==[/tex] 域微分性质得[p=align:center][tex=15.714x2.786]T9vm4bhUc0cRqUDAjs53bNnluBRo3uobFc0yujhuZiLQ5pZB77JxVFvyQxfgHr8cRz+AoMoGT413LVVmadhUyh0XncQVlOCIgWy0vZtdNIZRn+BrgBVqevG/IcLbpcu6e7EPngRRu4QQQfduSe5DCGhOWx2P/gUMXqaX77fpWOA=[/tex]而 [tex=17.643x2.786]z84/DKHjbWdCbqqcaNR0RvL3jVyzkTu9XVOlmMMi2DB7sZ2L3PWGQ0TQ8lOlrH+35lFrPCxi4S0l6i8RzBHWFEiHZa1/g1XgrNuAa3tdSYjwjo57EvdarkpwUMLJzO+PaAYCM7p+dJBt0IHhWuWWWsBRobZIxXgON4qFwC+qmq0=[/tex], 由线性性质得[p=align:center][tex=14.571x2.786]mbRqJe5AmTETxQ24tnZjUhSgoAHtcLlG/4G1DQqYI8xygDG8f9AhHSlESZ0pjxqHAUvv3MuHIvqRupAQEzwiKxKFUo0N7Ayil+DogvcLni/Fiev1c4XiOmlWlRvieEST[/tex]

    内容

    • 0

      用部分分式展开法及留数法求下列[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 变换 [tex=1.929x1.357]41/0nyx2Fl2ibFB6g3arhw==[/tex] 所对应的原右边序列。[br][/br][tex=8.143x2.786]XUcx/cIpPl3jli8ECvNyehYWiPqgqz6XGzBkZNjNQ0ZSDCJDX0It2H3WnpuV5iU+[/tex]

    • 1

      用[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换的性质和常用[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换公式求下列信号的双边[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换。[tex=10.071x3.0]YLxjEL8mCw3rmOBMk8uvOO/0FRDLa2nZU7fcsNW+LNhLlEYQlCCIN+rBnsq6+uJpIjhvb212zdpOV0ZV6KFJtkdSzwwRnwkBl9FAC2AFfgk=[/tex]

    • 2

      求下列[tex=1.929x1.357]41/0nyx2Fl2ibFB6g3arhw==[/tex]的单边[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]逆变换:[tex=12.214x2.429]p+LzNVFaz/XqfWcjvHIbrooHUtqYjGR7HxTGlfuqwmNkEXV7RbCKXfDu5mAkoaN0[/tex]

    • 3

      已知序列的[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 变换如下,求对应的原右边序列。[br][/br][tex=7.0x2.571]KGC6Q+3VXGS4nCD+oDiPY9wJVglg7yWN4+vx0uZJlWlVM4bmxeeAIlcdZflTDdh5[/tex]

    • 4

      已知序列的[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 变换如下,求对应的原右边序列。[br][/br][tex=5.357x2.429]Y9M2KT2gIr2NWKHz4Iia8kpxq+bgEgYcRyDcf2FcNuM=[/tex]