设总体[tex=5.857x1.286]npQtxYoeCKuqI9CKINcqbKC81G4lf686rejx7Jyd9/o=[/tex],[tex=3.429x1.286]XS8avkXtndQmRTXc/WE3U4JnxRPxcsbyfNaYMiZCAkE=[/tex]是未知参数,[tex=7.143x1.286]n7OaI2Ca46FtbMSaxOy1Qkc5x0yIMz9NDMDmKsQETmI=[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的样本,求[tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex],[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的矩估计和极大似然估计。
举一反三
- 已知总体X的密度函数为[tex=7.714x2.0]W6lO2xb08XtfGU+i+eWnnw0CYD2q/WnshEaqki8GpVMOeqy/otZWzfjDp5+q5K1zhcE5PYDwCsbkps/Ai80OlAWY2LzwO27YO5WUcjykYsTiv/aqhrPzMG7mjSWssq7cUfDYwL/Ba6ELGNi0tzZLIQ==[/tex],[tex=1.214x1.214]Eh13YTQY62V2jiw99mPjtA==[/tex],[tex=1.214x1.214]CN6DjqLuf+rqHGJDNNgdBg==[/tex],...,[tex=1.286x1.214]cmYIy5GvvFOF7TsVoM1mWQ==[/tex]为来自总体X的简单随机样本,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]为大于0的参数,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的最大似然估计量为[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex]。(1)求[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex];(2)求[tex=1.429x1.286]kAj2yPcF3eKnwjhncaSvSHCAvuBvmcXbhaVW7sTnRdA=[/tex],[tex=1.429x1.286]qRLvccS7Ogyct3oif4OV1P/xMQdG7ad8lpt2hyG7+nU=[/tex]。
- 设[tex=6.357x1.286]Hl6KOQUxBtQGuHIDH5YOE0ppGsyq9WEkBiRqjY9Lm60=[/tex]是来自两点分布总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的样本,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布为:[tex=5.929x1.286]71OHb4g94MSX2ERcwf0+mA==[/tex],[tex=5.857x1.286]lVOFAWlYiIvc7q2vCx2HiA==[/tex] [tex=9.143x1.286]emqSdFcVHZlFTnkX8dWuI46EXY9s3NVrxKKUvRwWhk0=[/tex]。求样本[tex=7.143x1.286]n7OaI2Ca46FtbMSaxOy1Qkc5x0yIMz9NDMDmKsQETmI=[/tex]的分布律。
- 设总体 [tex=6.071x1.286]/ZR0dAzaI7eKAw6bIvA7M0g+s+6kB+5nIfckJgPP1nhaYFrm8S5qbrfgYj2MPMNG[/tex], [tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex] 为已知, [tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex] 为未知,设 [tex=6.357x1.286]KVoy4dOWnNwvy9BLl7knKSTs09Z9vAkENvcNTgIGA+Upt0L25ih9LiFYXgNs0ZMN[/tex] 是来自 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 的样本,则 [tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex] 的置信水平为 90%的置信区间为[input=type:blank,size:6][/input]
- 假设总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从正态分布[tex=3.857x1.286]JrKs5T7u6pQoQQeeNFM4wlqVD1ToGDgfRW4wVkSybdVGmoWGoPoU2WN8LLOUhxlv[/tex],[tex=7.143x1.286]4bGv4GNhfHifuCST4hq27TUnKcULSEGkpmlzOaOCxYrgowoOfBw3l4O1C2q07+LX[/tex]是分别来自总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的简单随机样本,[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]和[tex=1.071x1.286]8wtfUF0L5fpTSa30/FBLZw==[/tex]为样本均值和方差.证明:(1)样本均值[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的数学期望[tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex]的有效估计量;(2)样本方差[tex=1.071x1.286]8wtfUF0L5fpTSa30/FBLZw==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的方差[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的渐近有效估计量;(3)未修正样本方差[tex=1.071x1.286]nBOWZJXhhOBIR+/HwFiAug==[/tex](二阶样本中心矩)是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的方差[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的渐近有效估计量.
- 设总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从正态分布[tex=4.286x1.286]B0gTlbNvUgNr9YI/Hke660ESRmOFvLtjRTY5mDqMVCfAvnt2oOrT+WZcojxSGrf6[/tex]其中[tex=0.857x1.286]NJJo2KdlNkk9e8bLvjeR1w==[/tex]未知,则在求总体均值[tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex]的区间估计时,使的统计量[u] [/u]