• 2022-06-15
    用[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换方法求解差分方程,结果以[tex=1.857x1.357]j4OuWVRb8yzovM39yWkL6g==[/tex]表示[tex=13.357x1.357]gtORptEMhvPgQebRDJ4sECpHYukzyjDyChcaoKz7KDdxnifQS51Bqm2SNHH4q11O[/tex][tex=17.643x1.357]pJUUOpT6W0SIJLRFpaL++in1eA7GuEQH7ZtBwL8g7kjPsJjzGKLK3QYCU+aDC6WC[/tex]
  • 设[tex=7.571x1.357]Hrb525Jp1wK5AJPVbUI1modW9c0svxkCbcu357zK5fA=[/tex]由超前定理,有[tex=18.214x2.929]4TV86JZQuNlVgse2uzOTuAQWF0ps/zMTpCNgEMkE09i2F1YH6Iy4OdYcOEL5wYOZkgTgHU2gWMi1B+A8QukZbgP+8xkBrl//0k+HzpNdnwlgMxQreKvf8HrV3bKQFvRn[/tex]代入初始条件,得[tex=13.214x2.429]i1fhJuwpPFYcfWoCXBBc5iWPZwChg2IK/VTIhaOk3DQ4DP28r4U5WCqmf8n1QEliaMVtBxmzQ/bZ9CxPWLWQCQ==[/tex]所以 [tex=25.571x2.786]eNvjQ/qdTqOPLVpLe2mGEWVEQ/RtZD7gS3LYt2ja45yHL92UiI22cgn5bFWdyOCXwaS3NVPrSKQa6OX5JUg55h0Qc7k8+KZBuvB/FW9B8HoeGrI7JRpgoEk43lGvyMj0wWtQ07cZjlZEqD4YElNfiYcmElzjn6Uuiel74/gJuWASZhpuDzipvWRJV3tmezry[/tex][tex=35.214x2.357]lNqNFeINx+K1Uktp2z+4E3gICQlSAOz/dMMrQsZBY/Am7A40Tq5aaIJR6KB1R6DP4S6LdRD3/K0S8Mp/SMkDYqFdSDyb7nsfB2joyh4pnoH7yoRT7UjiL8GcCl8vEEhyjWicbTh2TxioafixrBsjbiydhg3JxDY6GaFXEtq+4QE=[/tex]

    举一反三

    内容

    • 0

      对素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的不同值, 找出循环群[tex=1.143x1.357]oOz0oH4UpFaaOY7OuGotcg8wtMntQEjCiVorwD1W3R4=[/tex]的所有生成元和所有子群.(1) 7 ;       (2) 11 ;           (3) 13(4) 17 ;     (5) 19 ;           (6) 23 .

    • 1

      判断半径大小并说明原因:(1)[tex=1.071x1.0]ZIxpATrL2EWTpYe3CKPlpg==[/tex]与 [tex=1.357x1.0]LO7mudz7++HOXb8YDQ1UtQ==[/tex](2) [tex=1.286x1.0]nOvFdt4hpTubfX23eRvSvg==[/tex]与[tex=1.071x1.0]Kr2c9X1cZ4El5JSNMoM0/w==[/tex](3) [tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]与[tex=1.357x1.0]ovKrdUm5wnQSTfl9He3wzA==[/tex](4)[tex=1.143x1.0]8nY7k4VEnlDIEx7o05iMhQ==[/tex]与[tex=1.357x1.214]in11+JirBe0MeyXDnVwAww==[/tex](5)[tex=1.643x1.214]cIgqspnlK9Ra13rNdyZhHQ==[/tex]与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex](6)[tex=1.929x1.143]CtrLAecFBVyCnMYbqB02Ag==[/tex]与[tex=2.0x1.214]2cEIifUWf5oYRzhjCpTV6A==[/tex](7)[tex=2.214x1.214]OdTls2gllRl/Z1zy0+35/g==[/tex]与[tex=2.071x1.214]YDXlUgl4Yvd6QFjcd0Ns2Q==[/tex](8)[tex=2.071x1.214]QvCjZKA7OQkNYccCl0MVgQ==[/tex]与[tex=1.929x1.214]GDfkuEdqfBLP2oRgr+Wojw==[/tex]

    • 2

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]

    • 3

      求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$

    • 4

      >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']