未知类型:{'options': ['[tex=3.643x1.286]nrYZdRZHGh+RJNN7Uul9FQ==[/tex]', '[tex=3.643x1.286]rToeYlXEWYWHgbqiDI05DA==[/tex]', '[tex=3.714x1.286]NzHjr0tpIAwujw9hyBA+DA==[/tex]', '[tex=3.714x1.286]PH6cXmXKkbAQXb50DRXb4A==[/tex]'], 'type': 102}
举一反三
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的导函数为[tex=1.929x1.286]KGovRladSkKYVYlTfzo4dQ==[/tex],求[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的原函数全体。
- 设函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 有相同的定义域,证明:1)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是偶函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;2)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;3)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] , 一个是偶函数另一个是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是奇函数。
- 若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的一个原函数为[tex=1.929x1.286]KGovRladSkKYVYlTfzo4dQ==[/tex],则[tex=3.214x1.286]nOJBJucVwlQuHq02hM9Tso8zsX+SbW2GYgy/qe8Etic=[/tex][input=type:blank,size:6][/input] .
- 设有下列4个条件:(1)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续.(2)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上有界.(3)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可导. (4)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可积. 则这4个条件之间的正确关系是 未知类型:{'options': ['[tex=5.214x1.286]otUBslvC+g9E/+QRN3FPcz3QWAnX57gbwSFiq/83tZrJDCQDXng89PvbVLa0ErH1[/tex][tex=3.929x1.286]tD4aFAoM85LoQt+qBgIMMo1Mlcypda8ZwrSysyWdmUM=[/tex]', '[tex=5.214x1.286]otUBslvC+g9E/+QRN3FPc+FFFKMJscOGEYnfyfqpT38HisBD+YsE9Wm8vKAwGBZU[/tex][tex=3.929x1.286]i1AFd+ysL/BK+chgAtWII4EOHwT9ui5FjdIGbZfMEVY=[/tex]', '[tex=5.214x1.286]otUBslvC+g9E/+QRN3FPc63PLXQBY+RInk3VeIGVKAUTVTu9w4rFocSKUD2aYvIJ[/tex][tex=3.929x1.286]tD4aFAoM85LoQt+qBgIMMg94hhXOci2B7g9Vu4mm3UA=[/tex]', '[tex=5.214x1.286]4/5aoaEuruE0zuHBY80AilsCo+Vn8cII8nbhXUGzLxvxZe8HtwdnL7T48PRQeC9D[/tex][tex=3.929x1.286]i1AFd+ysL/BK+chgAtWII4EOHwT9ui5FjdIGbZfMEVY=[/tex]'], 'type': 102}
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上的连续函数,则下列结论正确的是[input=type:blank,size:6][/input] . 未知类型:{'options': ['[tex=4.214x2.286]ohJIGoWp5uV0vDiL61mvSXwZte0Pofdm+Gr1ixiakGA=[/tex]是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的一个原函数', '[tex=4.143x2.143]QifkUBd0/lrnK3jkamdbTSpY5oBzv0TDPrsA/83BhQQ=[/tex]不一定存在', '[tex=4.143x2.5]8QU3aWoJhSGnV7gONGqJzYBqYHVz6IHCFfeo7Yl7KQE=[/tex]是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的一个原函数', '[tex=3.143x2.0]0yztnNakyyO1VrEM16DB+ECeILRHrvBw4AynxpLC7Eo=[/tex]一定存在'], 'type': 102}
内容
- 0
设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex] 上可微. 若 [tex=3.929x1.286]nOJBJucVwlQuHq02hM9TshFm+YZTv5ximTg1KFYKyjI=[/tex], [tex=1.214x1.286]PKqH/cEhuiXr8VrM8vIe7g==[/tex]. [tex=3.643x1.286]NvSU0Evv5X0Mn23pktkiUm7mnooWj8siWcA9R6/IBpA=[/tex], 试证明 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex] 上是一个常数 (函数).
- 1
函数[tex=7.929x1.286]HGVDRbncuMBImuU3xScD0EwCBU7TqfIVjHp22LEAJVw=[/tex], 其中[tex=1.929x1.286]W1PBftHxRbnObLt0Fbm2cw==[/tex]为连续函数及 [tex=3.714x1.286]lw7dL7Wj6udQ4Oki8UAqro3jnxtmXi64F5U+BuRCEoE=[/tex], 则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.429x1.286]FQFdyBvmv+TKpBgt7chSDw==[/tex]连续但不可导。
- 2
设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex] 上连续、可导且 [tex=3.643x1.286]01iTHaAOWrq6T4dbzAxzlg==[/tex],若存在正常数 [tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex],使得 [tex=6.929x1.286]dKfAGo3rU9ALC9dg+OnL06RoMzozmczP4A5vbEP9n1rDfwdNfo7cjpfGNpqPBrTi2q32HcmgeEtqKNvDuhfoXg==[/tex]。 证明:在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]恒等于零。
- 3
函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上有界是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可积的[input=type:blank,size:4][/input]条件,而 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可积的[input=type:blank,size:4][/input]条件。
- 4
证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex] 连续,且[tex=3.643x1.286]34y+EoEx1EWnBn3zBaG1Btxx65bXyzet52Gp0rjE6WU=[/tex], 而函数[tex=2.857x1.286]Sgpgmul/u9K+zCMt4I+NIZhyR7WwOf6O1bu2im+T4+w=[/tex]在 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]可导则函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]也可导。