若线性方程组Ax=b的系数矩阵A严格对角占优,则雅可比迭代法和高斯—赛德尔迭代法
举一反三
- 若线性方程组Ax=b的系数矩阵A严格对角占优,则雅可比迭代法和赛德尔迭代法 A: 收敛 B: 都发散 C: 雅可比迭代法收敛而高斯—赛德尔迭代法发散 D: 雅可比迭代法发散而高斯—赛德尔迭代法收敛
- 若线性方程组Ax=b的系数矩阵A是行(列)严格对角占优矩阵,则雅克比迭代法和高斯-塞德尔迭代法() A: 都收敛 B: 雅可比迭代收敛,高斯-塞德尔迭代不一定收敛 C: 高斯-塞德尔迭代收敛,雅可比迭代不一定收敛 D: 都发散
- 【单选题】若线性方程组 的系数矩阵 是严格对角占优阵,则解 的雅可比迭代法和高斯-赛德尔迭代法() A. 都收敛; B. 雅可比迭代法收敛,而高斯-赛德尔迭代法发散; C. 都发散; D. 雅可比迭代法发散,而高斯-赛德尔迭代法收敛;
- 如果线性方程组的系数矩阵A是严格对角占优矩阵,雅可比迭代法和相应赛德尔迭代法都收敛。
- 设线性方程组的系数矩阵为不可约且弱对角占优矩阵,则求解该方程组的迭代法(). A: 雅可比迭代法收敛,但赛德尔迭代法不收敛 B: 雅可比和赛德尔迭代法均收敛 C: 雅可比迭代法不收敛,但赛德尔迭代法收敛 D: 雅可比和赛德尔迭代法均不收敛