• 2022-06-19
    分别在复数域、实数域和有理数域上分解下面多项式为不可约因式的乘积::[tex=2.714x1.357]PwkTOgXj/UOWanKfIZbz9Q==[/tex]。
  • 解:[tex=2.714x1.357]PwkTOgXj/UOWanKfIZbz9Q==[/tex][tex=9.143x1.714]KW0SPvQDgD7l/662xHKwRCNGVULgIMrQ+AeomiMSAJyaklbWusWg2hEmxHHfI78T[/tex][tex=9.214x1.429]Ernxj+LsmmVDpicdBitQTbAn+hhbYpJUdDdd5nQC8BOEpWQog393/FSEMcUMjJZ+[/tex][tex=14.786x1.786]Ernxj+LsmmVDpicdBitQTX3W8RAhPmJQCwk+oZCoF/SZIlLN8ac5lSgZpHshEw0KIaJjsM+6xVh5GvwfZFB22SvB4FGFTL21ozH3U03Umek=[/tex][tex=21.786x3.357]vvfrajKjQHW931MMLryvg2q1pnkY41KV/YLA1tIGBRGZy5jOZ/82Jczj+G3GuouGfL0uZef70bjHtk0wVQbgwFr1TJC7am+Sq78OqRyvVMvZWmUhvAyzYKlR2+/3r8eccJsTv94CTkaSjLPqGfSlIgVvLnLWYARm6FvpD1+vVZUzBAa0/z/2kcFSZoeZSVep[/tex][tex=18.5x3.357]pT8C2TQ8YTDP9CklxaB36g19G99o1fa+oSGjylsrAF0KWRd2NOfYJ4b7xWNRN5HF3cTLAgR5DeCapzZFzoEIpE809l4e0+wXpiBhZ+P3mQfci5xzf25U5fl9UljQbdJAb1demq1beq/N4gRWMrioG7VggooKtIdM2JxwT8f1QfzYLR/V19oIah71gg6WCvkr[/tex],因此在复数域上[tex=21.643x3.357]bhB57cxTvjP3vaMBlEL+4IrE2Ecq6OTLArmsXF6ydeYLt8VujkykSR5HXz2JVfIAZvEM27jHITgwFlE+P8KybbUzGFrd4TGACEpBtf3F9pm4N7twMkOI4k/fj6q/FDhapSiumjpXv876zXemWFqRTm6W1oerAynGrnB/pn0KMSEbNaca3DBHy1poiQHJtAIW[/tex][tex=18.5x3.357]pT8C2TQ8YTDP9CklxaB36g19G99o1fa+oSGjylsrAF0KWRd2NOfYJ4b7xWNRN5HF3cTLAgR5DeCapzZFzoEIpE809l4e0+wXpiBhZ+P3mQfci5xzf25U5fl9UljQbdJAb1demq1beq/N4gRWMrioG7VggooKtIdM2JxwT8f1QfzYLR/V19oIah71gg6WCvkr[/tex];在实数域上,[tex=15.714x2.214]hRclu64yRGzbH1qlfXHG5fSWatJrfgzP80mQ9YXmrBGPrRxkLyzBILU6Dw2CB5bAT/T5W4XNZI11kGmPyXu9m3r5FgigrbWh4Ew5Ecig36o=[/tex];在有理数域上,[tex=2.714x1.357]PwkTOgXj/UOWanKfIZbz9Q==[/tex]不可约。

    内容

    • 0

      在复数和实数域上,分解[tex=2.357x1.143]XrrmFL5Yg9lFJeB+j4QyDw==[/tex]为不可约因式的乘积。

    • 1

      分别在复数域、实数域上将多项式[tex=4.5x1.357]VKIn4AFkSA+GClyDGKgJwyZfDaryIQEZFkOzOiMxJ0g=[/tex]分解为不可约多项式的乘积.

    • 2

      分别在复数域、实数域上将多项式[tex=2.643x1.357]ZGwusRESqSsPNjadnptfBg==[/tex]分解为不可约多项式的乘积.

    • 3

      在有理数域上分解多项式[tex=6.357x1.357]k8yA+rXMotAfgt1iTjOnhSrBhsmum2U0pH9Gxj/5p7s=[/tex]为不可约因式的乘积

    • 4

      在有理数域上分解多项式[tex=2.786x1.357]Ls+qa/OiaNjEGVhGgFV+pA==[/tex]为不可约因式的乘积