设$p(x),f(x)$是数域$P$上多项式,且$p(x)$不可约,则下述断言正确的是( )。
A: 若$p(x)$是$f(x)$的$k$重因式,则$p(x)$是$f^{(k)}(x)$的因式;
B: 若$p(x)$是$f^{'}(x)$的$k-1$重因式,则$p(x)$是$f(x)$的$k$重因式;
C: 若$p(x)$是$f^{(2)}(x)$的$k-2$重因式,则$p(x)$是$f(x)$的$k$重因式;
D: 若$p(x)$是$f^{'}(x)$的$k-1$重因式,且$p(x)$是$f(x)$的因式,则$p(x)$是$f(x)$的$k$重因式。
A: 若$p(x)$是$f(x)$的$k$重因式,则$p(x)$是$f^{(k)}(x)$的因式;
B: 若$p(x)$是$f^{'}(x)$的$k-1$重因式,则$p(x)$是$f(x)$的$k$重因式;
C: 若$p(x)$是$f^{(2)}(x)$的$k-2$重因式,则$p(x)$是$f(x)$的$k$重因式;
D: 若$p(x)$是$f^{'}(x)$的$k-1$重因式,且$p(x)$是$f(x)$的因式,则$p(x)$是$f(x)$的$k$重因式。