设\(f(x) = \left\{ {\matrix{ { { { { e^{2x}} - 1} \over {kx}}\quad ,x > 0} \cr {1 - x\quad ,x \le 0} \cr } } \right.\)在\(x = 0\)处连续,则\(k=\)( )。
A: -1
B: 1
C: -2
D: 2
A: -1
B: 1
C: -2
D: 2
举一反三
- 下列函数中,在其定义域内处处连续的是( )。 A: \(f(x) = \left\{ {\matrix{ { { {1 - {x^2}} \over {1 + x}}\quad ,x \ne 1} \cr {0\quad \quad ,x = 1} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {\ln x\quad ,x > 0} \cr { { x^2}\quad ,x \le 0} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ { { {\sqrt {x + 1} - 1} \over {\sqrt x }}\quad ,x > 0} \cr {1\quad ,x\le 0} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { x^2} + 2x\quad ,x \le 0} \cr { { e^x}\quad ,x > 0} \cr } } \right.\)
- 在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)
- 函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\)在\(x =\)( )处间断。______
- 设函数\(f(x) = \left\{ {\matrix{ { { x^2} - 1\;, - 1 \le x < 0} \cr {x\;\quad \;,0 \le x < 1} \cr {2 - x\;\quad ,1 \le x \le 2} \cr } } \right.\),则下列说法正确的是( )。 A: 在\( x = 0\)及\( x = 1\)处均间断 B: 在\( x = 0\)及\( x = 1\)处均连续 C: 在\( x = 0\)连续,在\( x = 1\)处间断 D: 在\(x = 0\)间断,在\(x = 1\)处连续
- \(a = 2\)时,函数\(f(x) = \left\{ {\matrix{ {a\quad \quad ,x = 0} \cr {2 { { \sin x} \over x},x \ne 0} \cr } } \right.\)在\(x = 0\)处连续。( )