设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]到[tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex]的一个同构映射,证明:[tex=1.571x1.214]Lpzn9VRyvhKYZEyTGhvlUA==[/tex]是 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex]到[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的一个同构映射。
举一反三
- 设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]和[tex=0.5x0.786]xdTs2QHMXTpKzI7ZnwCRMQ==[/tex]分别是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]到[tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex]与[tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex]到[tex=1.286x1.143]5e6TFUJHLxbGL39BTJK478PRVrwxa0yFlrmakbRHqtY=[/tex]的一个同构映射。证明:[tex=0.5x0.786]xdTs2QHMXTpKzI7ZnwCRMQ==[/tex][tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]到[tex=1.286x1.143]5e6TFUJHLxbGL39BTJK478PRVrwxa0yFlrmakbRHqtY=[/tex]的一个同构映射。
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上有限维线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个线性映射. 证明: 存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的由个基和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这一对基下的矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 形如 [tex=5.214x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAqVscNdEHQ2gVv3HlIwyzLR+CcPnB5qDwlqwJNgLQJPHg==[/tex]
- 设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的线性空间([tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都不必是有限维的),[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]到[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]的一个线性映射,[tex=1.143x1.071]Z+TPszFO7LPa8KJ9E9RUwQ==[/tex]是[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]的对偶映射。证明:[tex=6.857x1.429]kUgEPF/gdFSEI5/1Hb0q1BMyRtAjGBys17NEkKgvHKpCBE3gT8edJaET4L5GXGrWFUg3jXMSHvEi1sQXe+w9IA==[/tex]。
- 证明 : 域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的线性空间 [tex=3.714x1.357]UiDQw2E73be8hdEiXF85HanyFc3YW5Szo1gZVOYq19w=[/tex] 与 [tex=1.571x1.0]5b/5Z+UXHTCnPfoQMi2Vug==[/tex] 同构, 并且写出一个同构映射.
- 设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的线性空间([tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都不必是有限维的),[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]到[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]的一个线性映射,[tex=1.286x1.071]c5Cf4pRARaBipYntugL/3vKeBzcFZmpil4mkUJnj1jI=[/tex]是[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]的对偶映射。证明:若[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]是满射,则[tex=1.286x1.071]c5Cf4pRARaBipYntugL/3vKeBzcFZmpil4mkUJnj1jI=[/tex]是单射。