• 2022-06-19
    函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在可导点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处取极值的必要条件为:______.
  • [tex=4.143x1.429]k5weWvhPtr/rc567JmOhZX/bNnmnAPE/i2UfW9dBVfgDCPncWH7qDQobP9cisqvY[/tex].

    举一反三

    内容

    • 0

      如果函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处可导,那么是否存在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 一个邻域, 在此邻域内 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 也一定可导? 

    • 1

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处可导,试讨论[tex=2.429x1.357]HahJs8lvA4tV0CFg1fYnxw==[/tex]在点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处的可导性.

    • 2

      若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点可导,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点不可导,证明函数[tex=7.214x1.357]hcdVQpdxM9qj0RdpAAmxT/RvLYsj+nLAffSD2trymtM=[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点不可导

    • 3

      函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处连续是在该点处可导的

    • 4

      若函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处取极值,则必有 [tex=4.429x1.429]k5weWvhPtr/rc567JmOhZZSAsxNKcgMkSqt/brS8Q0fLDf6SuyEnmS5PNXfnLstH[/tex]