在支持向量机中,样本线性不可分时可以投影到高维空间,转换成线性可分情况。
举一反三
- 以下关于支持向量机的描述不正确的是( )。 A: 它是二分类模型,但可以扩展为多分类模型 B: 训练支持向量机就是找到最优分割线、平面或超平面,使得样本距离分割线、平面或超平面最远 C: 样本集中的所有样本均是“支持向量” D: 样本线性不可分时可以投影到高维空间,转换成线性可分情况
- 支持向量机模型包括 A: 线性可分支持向量机 B: 线性支持向量机 C: 非线性可分支持向量机 D: 非线性支持向量机
- 以下哪些与支持向量机无关 A: 使用核函数 B: 将低维向量向高维向量转换 C: 使低维线性不可分的数据在高维线性可分 D: 使用的向量都叫做支持向量
- 关于线性和非线性支持向量机的描述,以下哪种说法不对 A: 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机; B: 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机; C: 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机; D: 线性可分支持向量机利用间隔最大化求得最优分离超平面,这时的解不是唯一的
- 当样本在原始空间线性不可分时,可将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分。