由曲线 \(y= { { x}^{2}},x= { { y}^{2}}\)所围成的图形绕 \(y\)轴旋转所得旋转体的体积为=( )。
A: \(\frac{3}{5}\pi \)
B: \(\frac{3}{8}\pi \)
C: \(\frac{3}{10}\pi \)
D: \(\frac{3}{20}\pi \)
A: \(\frac{3}{5}\pi \)
B: \(\frac{3}{8}\pi \)
C: \(\frac{3}{10}\pi \)
D: \(\frac{3}{20}\pi \)
举一反三
- 由 \(y= { { x}^{3}},x=2,y=0\)所围成的图形绕 \(x \)轴旋转所得旋转体的体积为=( )。 A: \(\frac{16}{7}\pi \) B: \(\frac{32}{7}\pi \) C: \(\frac{64}{7}\pi \) D: \(\frac{128}{7}\pi \)
- 应用格林公式可计算星形线$x=a\cos^3t$, $y=a\sin^3 t$所围的平面面积为 A: $\pi a^2$ B: $\frac{3}{4}\pi a^2$ C: $\frac{3}{8}\pi a^2$ D: $\frac{3}{16}\pi a^2$
- 由抛物线 \( { { y}^{2}}=4ax\)及直线\(x= { { x}_{0}}( { { x}_{0}}>0)\) 所围成的图形绕 \(x\)轴旋转所得旋转体的体积为 =( )。 A: \(\frac{4}{3} { { a}^{2}}\) B: \(\frac{8}{3} { { a}^{2}}\) C: \(\frac{16}{3} { { a}^{2}}\) D: \(\frac{32}{3} { { a}^{2}}\)
- 双曲抛物面$z=xy$被圆柱面${{x}^{2}}+{{y}^{2}}={{a}^{2}}$截下部分的面积为( ) A: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}+1]$ B: $\frac{2\pi }{3}[{{(1+a)}^{3/2}}-1]$ C: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}+1]$ D: $\frac{2\pi }{3}[{{(1+a)}^{2/3}}-1]$
- 下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$