由 \(y= { { x}^{3}},x=2,y=0\)所围成的图形绕 \(x \)轴旋转所得旋转体的体积为=( )。
A: \(\frac{16}{7}\pi \)
B: \(\frac{32}{7}\pi \)
C: \(\frac{64}{7}\pi \)
D: \(\frac{128}{7}\pi \)
A: \(\frac{16}{7}\pi \)
B: \(\frac{32}{7}\pi \)
C: \(\frac{64}{7}\pi \)
D: \(\frac{128}{7}\pi \)
举一反三
- 由曲线 \(y= { { x}^{2}},x= { { y}^{2}}\)所围成的图形绕 \(y\)轴旋转所得旋转体的体积为=( )。 A: \(\frac{3}{5}\pi \) B: \(\frac{3}{8}\pi \) C: \(\frac{3}{10}\pi \) D: \(\frac{3}{20}\pi \)
- 函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
- 由抛物线 \( { { y}^{2}}=4ax\)及直线\(x= { { x}_{0}}( { { x}_{0}}>0)\) 所围成的图形绕 \(x\)轴旋转所得旋转体的体积为 =( )。 A: \(\frac{4}{3} { { a}^{2}}\) B: \(\frac{8}{3} { { a}^{2}}\) C: \(\frac{16}{3} { { a}^{2}}\) D: \(\frac{32}{3} { { a}^{2}}\)
- 旋轮线$x=a(t-\sin t),y=a(1-\cos t)$的一拱($0 \le t \le 2 \pi$)的绕$x$轴旋转得到的立体的体积为 A: $\pi a^3$ B: $\frac{32}{105} \pi a^3$ C: $\pi a^2$ D: $\frac{32}{105} \pi a^2$
- 函数$f(x) =sin^3 x, x \in [0,2 \pi]$的单调递减区间为 A: $[\frac{\pi}{2},\frac{3}{2} \pi]$ B: $[\frac{3}{2} \pi,2 \pi]$ C: $[0,\frac{\pi}{2}]$ D: $[0,2 \pi]$