设f(x)在(0,1]上连续,并且lim.x→0+f(x)=A,.limx→0+f(x)=B,证明:∀ξ∈[A,B],∃xn∈(0,1),使得limn→∞f(xn)=ξ.
举一反三
- 设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
- 设f(x)在[0,1]上二阶可导,且f(0)=f"(0)=f(1)=f"(1)=0.证明:方程f"(x)=f(x)=0在(0,1)内有根.
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f"(x)<0,则____ A: f(0)<0 B: f(1)>0 C: f(1)>f(0) D: f(1)<f(0)
- 设f(x)在[a,b]上连续,且f(x)不恒等于零,证明∫(a,b)[f(x)]²dx>0
- f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,1],使得f(x)不等于0,则=