对于二叉树[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]的两个节点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex],应该选择[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]节点的先序、中序和后序中的哪两个序列来判断节点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]必定是节点[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的祖先,并给出判断的方法。不需要证明判断方法的正确性。
举一反三
- 如果一棵二叉树的先序序列是[tex=5.929x1.214]avBgSPsGN+4wsMVb208NjQ==[/tex]中序序列是[tex=5.929x1.214]W4gfzZCAUWaCRVe4gC87LQ==[/tex]则 。 未知类型:{'options': ['节点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和节点[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]分别在某节点的左子树和右子树中', '节点[tex=0.643x1.0]8+M7OwdUGZPUoOQAaQHP2A==[/tex]在节点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的右子树中', '节点[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]在节点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的左子树中', '节点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和节点[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]分别在某节点的两棵非空子树中'], 'type': 102}
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是人,[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是全世界所有人构成的集合,[tex=4.214x1.357]aYmvYybBxWxg0+7/ydOlVw==[/tex]。请问[tex=2.643x1.357]SIoYay3a5WDNlRaQ3ZJ11Q==[/tex]是否为偏序集,如果[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]不比[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]高
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是人,[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是全世界所有人构成的集合,[tex=4.214x1.357]aYmvYybBxWxg0+7/ydOlVw==[/tex]。请问[tex=2.643x1.357]SIoYay3a5WDNlRaQ3ZJ11Q==[/tex]是否为偏序集,如果[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]比[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的个子高
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是整数且不全为0,而[tex=9.857x1.214]hhHzRVDsWGXE+Yltfe39hDUdsl3Yzf9jGRPDg4wYEoJYR6eBGAfms1GUG8a2PN1l[/tex],证明[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的一个最大公因数当且仅当[tex=4.214x1.357]jI1oqbiyUHYU1xbNvvBdDK5ib01K7Vb7AmVkL7RKEyk=[/tex]
- 设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是不等于零的整数.且满足下列两个条件的正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]叫做[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的最小公倍数:(i)[tex=3.571x1.357]2r4ZpNKLF6HpDoP4ji6v2g==[/tex];(ii)如果[tex=1.929x1.071]rFBE4MTOSfVgaTsLfRa5FA==[/tex]且[tex=3.0x1.357]huACl7vUaYZTtkivcspxUA==[/tex],则[tex=2.357x1.357]53n+iIHx1XAyRRtWGAbzKQ==[/tex].证明:[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]任意两个不等于零的整数[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]都有唯一的最小公倍数;[tex=1.214x1.357]vzdGmXlbw83hTiK2SebvEA==[/tex]令[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]是[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]与[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的最小公倍数而[tex=3.357x1.357]Xxt8bFgvMkQLJViypSrDYg==[/tex],则[tex=4.0x1.357]Qf/TY1YnpQWchPW96yN99w==[/tex]