\(函数f(x,y)=\ln(x+y+1)在点(0,0)处的带佩亚诺余项的一阶泰勒公式为(\,)\)
A: \(x+y+o(\sqrt{x^2+y^2})\)
B: \(x-y+o(\sqrt{x^2+y^2})\)
C: \(-x+y+o(\sqrt{x^2+y^2})\)
D: \(x+y+1+o(\sqrt{x^2+y^2})\)
A: \(x+y+o(\sqrt{x^2+y^2})\)
B: \(x-y+o(\sqrt{x^2+y^2})\)
C: \(-x+y+o(\sqrt{x^2+y^2})\)
D: \(x+y+1+o(\sqrt{x^2+y^2})\)
举一反三
- 函数$f(x,y)=\sin x\cdot \ln (1+y)$在点$(0,0)$处带有Peano型余项的3阶Taylor公式为$f(x,y)=$ A: $xy+\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ B: $xy-\frac{1}{2}x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ C: $xy-x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$ D: $xy+x{{y}^{2}}+o({{(\sqrt{{{x}^{2}}+{{y}^{2}}})}^{3}})$
- \(函数f(x,y)=\ln(x+y+1)在点(0,0)处的带佩亚诺余项的二阶泰勒公式为(\,)\) A: \(x+y-\frac{1}{2}(x+y)+o(x^2+y^2)\) B: \(x+y-\frac{1}{2}(x+y)^2+o(\sqrt{x^2+y^2})\) C: \(x+y-\frac{1}{2}(x+y)^2+o(x^2+y^2)\) D: \(x+y-\frac{1}{2}(x+y)^3+o(x^2+y^2)\)
- 计算二重积分[img=159x48]18030731271aaff.png[/img], D 是单位圆盘[img=89x26]180307312f6708b.png[/img],应使用的语句是 A: Integrate[Sqrt[x^2+y^2 ], {x^2+y^2≤1}] B: Integrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] C: NIntegrate[Sqrt[x^2+y^2 ]Boole[x^2+y^2≤1],{x,-1,1},{y,-1,1}] D: Integrate[Sqrt[x^2+y^2 ],{x^2+y^2≤1,{x,-1,1},{y,-1,1}}]
- $(0,0)$是以下函数$f(x,y)$的定义域的内点是 A: $f(x,y)=\sqrt{x} \ln(x+y)$ B: $f(x,y)=\frac{x+y}{x^2+y^2 }$ C: $f(x,y)=\arcsin \frac{x}{y}$ D: $f(x,y)=\ln (1-x^2-y^2)$
- 求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解 A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]