设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵,并且 [tex=2.429x1.214]3DIgmzGG9qJBrRCPoJoIjw==[/tex]. 证明[tex=2.357x1.0]6tTh6rsLh84+IwljT6w71A==[/tex]。
举一反三
- 证明: 如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,且[tex=2.714x1.214]zb5xVNI+wREdAvsNRDYSVg==[/tex], 那么[tex=2.357x1.0]6tTh6rsLh84+IwljT6w71A==[/tex].
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实反对称矩阵, 证明: [tex=2.429x1.214]w0DJAkqgaLBmdaL0DbtIKg==[/tex] 是非异阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.
- 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正交矩阵,则 [tex=3.286x1.214]HM3JdBP5WP33uDCJD4OfucrkJzDkMfWdb5oNTiH51vQ=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵。