设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=5.714x1.357]gHrEoMXRoYD6ylIB8k+Dmg==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。
- [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值均为正数的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定方阵.
- [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正交矩阵的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值全为 1 或 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的列向量组成\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0维列向量空间\xa0[tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex]\xa0的一组标准正交基', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的列向量两两正交', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0正交相似于单位矩阵'], 'type': 102}