• 2022-06-16
    正交矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 经过下列变换后仍是正交矩阵的是 
    未知类型:{'options': ['对\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0进行一次初等变换', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0经过一次相似变换,即将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0变为\xa0[tex=4.071x1.429]QownWRd+uV36XT5bsLedlg==[/tex]\xa0是同阶可逆矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0经过一次合同变换,即将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0变为\xa0[tex=3.5x1.357]8DF6cu8cuWdrR7vM8b9agQP4/dyuWkNOqjJLXLtP6oI=[/tex]\xa0是同阶可逆矩阵', '对换\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的第\xa0[tex=1.214x1.214]RsDuJe0gfH4LhyvenBTDjg==[/tex]\xa0行后再对换第\xa0[tex=1.214x1.214]RsDuJe0gfH4LhyvenBTDjg==[/tex]\xa0列'], 'type': 102}
  • D

    举一反三

    内容

    • 0

      设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 经过有限次初等变换后得到矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 结论正确的是 未知类型:{'options': ['若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都是\xa0[tex=1.357x1.357]1a2yQD8hlfgii8HnFtGvkA==[/tex][tex=1.357x1.357]xYID9MyTP4ar7r02J9TZoA==[/tex] 阶方阵, 则\xa0[tex=3.429x1.357]d/YNdGUCkSmw0eItEgeiug==[/tex]', '若\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0和\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0都是\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0阶方阵,\xa0则\xa0[tex=1.357x1.357]0awZUhfhOcjHk6LSkdT6Gw==[/tex]\xa0和\xa0[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]\xa0同时为零或同时不为零', '若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是可逆矩阵, 则 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 未必是可逆矩阵', '[tex=2.143x1.0]D/ZeGkn0pCnS26u6JqHbgA==[/tex]'], 'type': 102}

    • 1

      [tex=0.5x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 以任意一个 [tex=0.5x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维非零列向量为特征向量的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是对角矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是数量矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是单位矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是零矩阵'], 'type': 102}

    • 2

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称阵, 则 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值的绝对值等于1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的任意\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个线性无关的特征向量两两正交', '存在正交矩阵\xa0[tex=0.857x1.0]3dL6VJHKHZnugLK8MQRDDg==[/tex], 使\xa0[tex=2.571x1.143]RvMNxxt784ax6BPwR+vlrx97TAmrzugQcbcsVRgnqt0=[/tex]\xa0为对角矩阵'], 'type': 102}

    • 3

      在下列条件中不是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为可逆矩阵的充要条件的是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值都不等于零', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式不等于零', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征多项式的常数项不等于零', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个线性无关的特征向量'], 'type': 102}

    • 4

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 交换 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第一、第二行后再交换第一、第二列, 所得矩阵为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的特征值 未知类型:{'options': ['完全相同', '[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex][b]\xa0[/b]的特征值是\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0特征值的相反数', '[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0的特征值是\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0特征值的平方', '无一定关系'], 'type': 102}