三元线性方程组AX=b的系数矩阵A的秩R(A)=2,且X1=(4,1,-2)T,X2=(2,2,-1)T,X3=(0,3,a)T均为AX=b的解向量,则a=()
A: 2
B: 1
C: 0
D: -1
A: 2
B: 1
C: 0
D: -1
举一反三
- 设n元线性方程组Ax=0的系数矩阵A的秩为n-3,且α1,α2,α3为线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( ). 未知类型:{'options': ['α1+α2,α2+α3,α3+α1', ' α2 -α1,α3 -α2,α1 -α3', ' 2α2 -α1,[img=16x41]17e0a8bd4180a46.png[/img]α3 -α2,α1 -α3', ' α1+α2+α3,α3-α2,-α1-2α3齐次线性anxingg'], 'type': 102}
- 设n元线性方程组Ax=0的系数矩阵A的秩为n-3,且α1,α2,α3为线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为(). A: α1+α2,α2+α3,α3+α1; B: α2-α1,α3-α2,α1-α3; C: D: α1+α2+α3,α3--α2,-α1-2α3.
- 设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为______. A: α1,α2,α3 B: α1+α2,α2+α3,α3+α1 C: α2,α3,α4或α1,α2,α4 D: α1+α2,α2+α3,α3+α4,α4+α1
- 设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为()。 A: α1,α3 B: α1,α2 C: α1,α2,α3 D: α2,α3,α4
- 设α1,α2,α3,α4为四维非零列向量,A=[α1,α2,α3,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[-1,0,2,0]T,则方程组A*X=0的基础解系为______. A: α1,α2,a3 B: α1+α2,α2+α3,α3+α1 C: α2,α3,α4 D: α1+α2,α2+α3,α3+α4,α4+α1