二次型f = x2 +2y2 +2z2 -2xy -2yz的正定性为 .
举一反三
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 已知:()x()-()y()=()1(),()z()-()y()=()2(),则()xy()+()yz()+()zx()-()x()2()-()y()2()-()z()2()的值是
- 设`\f(x,y,z) = x^2 + 4xy + ky^2 + z^2` 为正定二次型,则实数`\k`的取值范围是 ()
- 由方程\({z^3} - 3xyz = {a^3}\)所确定的隐函数\(z= f(x,y)\)的偏导数\( { { \partial z} \over {\partial x}} = \) A: \( { { yz} \over { { z^2} - xy}}\) B: \(- { { yz} \over { { z^2} - xy}}\) C: \( { { yz} \over { { z^2} +xy}}\) D: \(- { { yz} \over { { z^2}+xy}}\)
- 设方程\({sinz} - x^2yz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { 2xyz} \over {\cos z - {x^2}y}}\) B: \( { { 2xyz} \over {\cos z + {x^2}y}}\) C: \( { { xyz} \over {\cos z - {x^2}y}}\) D: \( { { 2xy} \over {\cos z - {x^2}y}}\)