If a sequence $\{u_n\}$ satisfies $|u_2-u_1|+|u_3-u_2|+\cdots+|u_n-u_{n-1}|+\cdots\leq c$, then is $\{u_n\}$ convergent?
A: It can not be convergent.
B: It must be convergent.
C: It is convergent in some cases, but is not in other cases.
A: It can not be convergent.
B: It must be convergent.
C: It is convergent in some cases, but is not in other cases.
举一反三
- 当$|z|<0.5$时左边序列$x[n]$为 A: $[(\frac{1}{2})^n-2^n]u[-n-1]$ B: $[(\frac{1}{2})^n+2^n]u[-n-1]$ C: $[2^n-(\frac{1}{2})^n]u[-n-1]$ D: $[2^n+(-\frac{1}{2})^n]u[-n-1]$
- 单位样值序列δ(n)可用单位阶跃序列u(n)表示为( ) A: u(n)-u(n-1) B: u(n)-u(n+1) C: u(n+1)-u(n) D: u(n-1)-u(n)
- NPN型三极管处于放大状态时,各极电位关系是()。 A: U\n>U\n>U\n B: U\n<U\n<U\n C: U\n>U\n>U\n D: U\n=U\n=U
- 单位脉冲序列δ(n)和单位阶跃序列u(n)的关系是()。 A: δ(n)=u(n)-u(n-1) B: δ(n)=δ(2n) C: δ(n)+δ(n+1)=u(n)-u(n-2) D: δ(n)=u(n)
- 标准正态分布是( )。 A: u~N(0, 1) B: u~N(0, 0) C: u~N(1, 1) D: u~N(1, 0)