If a sequence $\{u_n\}$ satisfies $|u_2-u_1|+|u_3-u_2|+\cdots+|u_n-u_{n-1}|+\cdots\leq c$, then is $\{u_n\}$ convergent? A: It can not be convergent. B: It must be convergent. C: It is convergent in some cases, but is not in other cases.
If a sequence $\{u_n\}$ satisfies $|u_2-u_1|+|u_3-u_2|+\cdots+|u_n-u_{n-1}|+\cdots\leq c$, then is $\{u_n\}$ convergent? A: It can not be convergent. B: It must be convergent. C: It is convergent in some cases, but is not in other cases.
关于正态分布,则下列说法不对的是 A: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间相互独立 B: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间两两不相关 C: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布 D: 若$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布,则$(X_1,X_2,\cdots,X_n)$服从正态分布
关于正态分布,则下列说法不对的是 A: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间相互独立 B: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$各分量之间两两不相关 C: 若$(X_1,X_2,\cdots,X_n)$服从正态分布,则$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布 D: 若$(X_1,X_2,\cdots,X_n)$的每一个分量服从正态分布,则$(X_1,X_2,\cdots,X_n)$服从正态分布
Which one of the following sequences has a finite limit? A: $\ln(n),\;n=1,2,\cdots$ B: $\ln(\sin(n)),\;n=1,2,\cdots$ C: $\sqrt{n^2-1}-n^{1/3},\;n=1,2,\cdots$ D: $ \sin\frac{1}{n},\;n=1,2,\cdots$
Which one of the following sequences has a finite limit? A: $\ln(n),\;n=1,2,\cdots$ B: $\ln(\sin(n)),\;n=1,2,\cdots$ C: $\sqrt{n^2-1}-n^{1/3},\;n=1,2,\cdots$ D: $ \sin\frac{1}{n},\;n=1,2,\cdots$
下列定义的映射中, ___ 不是内积. A: \(\langle x,y \rangle \triangleq xy ,x,y \in \mathbb{R}\) B: \(\langle (x_1,\cdots,x_n),(y_1,\cdots,y_n) \rangle \triangleq \Sigma_{i=1}^{n}x_iy_i,(x_1,\cdots,x_n),(y_1,\cdots,y_n)\in \mathbb{R}^n\) C: \(\langle f,g \rangle \triangleq \int_a^b f(x)g(x)\mathrm{d}x ,f,g \in C([a,b])\)(\([a,b]\)上连续实函数全体) D: \(\langle (x_1,\cdots,x_n),(y_1,\cdots,y_n) \rangle \triangleq \Sigma_{i,j=1}^{n}a_{ij}x_iy_i,(x_1,\cdots,x_n),(y_1,\cdots,y_n)\in \mathbb{R}^n,A = (a_{ij})是实对称方阵\)
下列定义的映射中, ___ 不是内积. A: \(\langle x,y \rangle \triangleq xy ,x,y \in \mathbb{R}\) B: \(\langle (x_1,\cdots,x_n),(y_1,\cdots,y_n) \rangle \triangleq \Sigma_{i=1}^{n}x_iy_i,(x_1,\cdots,x_n),(y_1,\cdots,y_n)\in \mathbb{R}^n\) C: \(\langle f,g \rangle \triangleq \int_a^b f(x)g(x)\mathrm{d}x ,f,g \in C([a,b])\)(\([a,b]\)上连续实函数全体) D: \(\langle (x_1,\cdots,x_n),(y_1,\cdots,y_n) \rangle \triangleq \Sigma_{i,j=1}^{n}a_{ij}x_iy_i,(x_1,\cdots,x_n),(y_1,\cdots,y_n)\in \mathbb{R}^n,A = (a_{ij})是实对称方阵\)
若函数$f(x)$满足条件:$f(x+\pi)=-f(x)$, 则在$(-\pi,\pi)$内的傅里叶级数满足下列哪个特性? A: $a_{2n}=b_{2n}=0, (n=1,2,\cdots)$ B: $a_{2n-1}=b_{2n-1}=0, (n=1,2,\cdots)$ C: $a_{2n-1}=b_{2n}=0, (n=1,2,\cdots)$ D: $a_{2n}=b_{2n-1}=0, (n=1,2,\cdots)$
若函数$f(x)$满足条件:$f(x+\pi)=-f(x)$, 则在$(-\pi,\pi)$内的傅里叶级数满足下列哪个特性? A: $a_{2n}=b_{2n}=0, (n=1,2,\cdots)$ B: $a_{2n-1}=b_{2n-1}=0, (n=1,2,\cdots)$ C: $a_{2n-1}=b_{2n}=0, (n=1,2,\cdots)$ D: $a_{2n}=b_{2n-1}=0, (n=1,2,\cdots)$
牛顿迭代法的迭代格式以下正确的是: A: ${x_{k + 1}} = {x_k} - {{f({x_k})} \over {f'({x_k})}},k = 0,1, \cdots $ B: ${x_{k + 1}} = {x_k} - {{f'({x_k})} \over {f({x_k})}},k = 0,1, \cdots $ C: ${x_{k + 1}} = {x_k} - {{f'({x_{k + 1}})} \over {f({x_k})}},k = 0,1, \cdots $ D: ${x_{k + 1}} = {x_k} - {{f({x_{k + 1}})} \over {f'({x_k})}},k = 0,1, \cdots $
牛顿迭代法的迭代格式以下正确的是: A: ${x_{k + 1}} = {x_k} - {{f({x_k})} \over {f'({x_k})}},k = 0,1, \cdots $ B: ${x_{k + 1}} = {x_k} - {{f'({x_k})} \over {f({x_k})}},k = 0,1, \cdots $ C: ${x_{k + 1}} = {x_k} - {{f'({x_{k + 1}})} \over {f({x_k})}},k = 0,1, \cdots $ D: ${x_{k + 1}} = {x_k} - {{f({x_{k + 1}})} \over {f'({x_k})}},k = 0,1, \cdots $
排列\( n123 \cdots (n - 1) \)的逆序数为\( n - 1 \).
排列\( n123 \cdots (n - 1) \)的逆序数为\( n - 1 \).
求方程\(x = \cos x\)根的牛顿迭代公式是 。 A: \({x_{n + 1}} = {x_n} - { { {x_n} - \cos {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) B: \({x_{n + 1}} = {x_n} + { { {x_n} - \cos {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) C: \({x_{n + 1}} = {x_n} - { { {x_n} - \sin {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) D: \({x_{n + 1}} = {x_n} - { { {x_n} - \cos {x_n}} \over {1 + \cos{x_n}}},n = 0,1,2 \cdots \)
求方程\(x = \cos x\)根的牛顿迭代公式是 。 A: \({x_{n + 1}} = {x_n} - { { {x_n} - \cos {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) B: \({x_{n + 1}} = {x_n} + { { {x_n} - \cos {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) C: \({x_{n + 1}} = {x_n} - { { {x_n} - \sin {x_n}} \over {1 + \sin {x_n}}},n = 0,1,2 \cdots \) D: \({x_{n + 1}} = {x_n} - { { {x_n} - \cos {x_n}} \over {1 + \cos{x_n}}},n = 0,1,2 \cdots \)
向量组`\alpha _1,\alpha _2, \cdots ,\alpha _m`线性相关的充要条件是()
向量组`\alpha _1,\alpha _2, \cdots ,\alpha _m`线性相关的充要条件是()
(1). 请问视频例中,\( Z=\max (X_1 ,X_2 ,\cdots ,X_n ) \) 的期望为()。
(1). 请问视频例中,\( Z=\max (X_1 ,X_2 ,\cdots ,X_n ) \) 的期望为()。