偏导数连续则函数可微,函数连续
举一反三
- 对于多元函数来说,下列说法正确的有() A: 偏导数存在,函数一定连续 B: 偏导数存在函数一定可微 C: 连续函数偏导数一定存在 D: 连续函数偏导数一定连续 E: 不连续的函数偏导数一定不存在 F: 不连续的函数可能存在偏导数 G: 若函数可微,则偏导数一定存在
- 多元函数的各个偏导数都连续,则函数可微.
- 下列关于多元函数连续、偏导及可微说法正确的是() A: 若连续,则偏导数存在 B: 若偏导数存在,则必然可微 C: 若偏导数存在,则必然连续 D: 若可微,则必然偏导数存在
- 下列关于多元函数的可微,偏导数及连续关系描述正确的是(). A: 若可微则偏导数一定存在 B: 若偏导数存在则一定可微 C: 若偏导数存在则一定连续 D: 若连续则一定可微
- 关于二元函数,以下说法正确的是: 若偏导数存在,则必可微 若偏导数存在,则必连续 若偏导数连续,则必可微 若连续,则偏导数必存在