容器内储有氧气, 其压强为 [tex=5.571x1.357]QkHS4cxioa3y2Mddhs5PPzFNqen78LUapz0BgAx2vDQ=[/tex], 温度为[tex=2.143x1.071]qVLKw2ALkqUDjq4LKUu4qTyIH3818LT8jJxnNC0EiAU=[/tex], 求: 氧气的密度。
举一反三
- 容器内储有氧气, 其压强[tex=5.643x1.214]mBQQgmhiYfTxDeedOZxFEqP0jzdPqqZ1ycM+gHXHLbA=[/tex] 温度 [tex=4.286x1.0]1TZ5bTah4AJDfo0J3pJxqg==[/tex], 求容器内氧气的[br][/br]分子数密度;
- 容器内储有氧气, 其压强[tex=5.643x1.214]mBQQgmhiYfTxDeedOZxFEqP0jzdPqqZ1ycM+gHXHLbA=[/tex] 温度 [tex=4.286x1.0]1TZ5bTah4AJDfo0J3pJxqg==[/tex], 求容器内氧气的[br][/br]分子间的平均距离
- 容器内储有氧气, 其压强[tex=5.643x1.214]mBQQgmhiYfTxDeedOZxFEqP0jzdPqqZ1ycM+gHXHLbA=[/tex] 温度 [tex=4.286x1.0]1TZ5bTah4AJDfo0J3pJxqg==[/tex], 求容器内氧气的[br][/br]分子的平均平动动能
- 容器内储有氧气, 其压强[tex=5.643x1.214]mBQQgmhiYfTxDeedOZxFEqP0jzdPqqZ1ycM+gHXHLbA=[/tex] 温度 [tex=4.286x1.0]1TZ5bTah4AJDfo0J3pJxqg==[/tex], 求容器内氧气的[br][/br]分子的方均根速度。
- 求以 [tex=2.357x1.214]u/hcg1/55F2pvtGMeEw9pw==[/tex] 和 [tex=3.071x1.214]5sVa6GD0b7ovTx2rohhG1G+NFmzyMDXRjuEJawew8Wg=[/tex]为特解的最低阶的常系数线性齐次方程. 解 由 $y=3 x$ 为特解可知 $\lambda_{1}=0$ 至少是特征方程的二重根. 由 $y=\sin 2 x$ 为特解可知特征方程有共功特征根 $\lambda_{2,3}=\pm 2 i .$ 所以特征方程为 $(\lambda-0)^{2}(\lambda-2 i)(\lambda+2 i)=0$, 即 $\lambda^{4}+4 \lambda^{2}=0 .$所以微分方程为 $y^{(4)}+4 y^{\prime \prime}=0 .$