A: \( - {2 \over 3} \)
B: \( - {3 \over 4} \)
C: \( - {1 \over 4} \)
D: \( {1 \over 2} \)
举一反三
- 向量组\({\alpha _1} = {\left( {1,1,1} \right)^T}{\kern 1pt} ,\;{\alpha _2} = {\left( {2,3,4} \right)^T},\,{\alpha _3} = {\left( {3,2,3} \right)^T},{\alpha _4} = {\left( {4,3,4} \right)^T}\)的一个极大无关组是( ) A: \({\alpha _1}\,,{\alpha _2}\) B: \({\alpha _1}\,,{\alpha _2},{\alpha _3}\) C: \({\alpha _2},{\alpha _3}\) D: \({\alpha _1}\,{\alpha _3}\)
- `\alpha _j`为四阶行列式D的第j列,(j=1,2,3,4,),且D=-5,则下列行列式中,等于-10的是( ) A: \[\left| {2{\alpha _1},2{\alpha _2},2{\alpha _3},2{\alpha _4}} \right|\] B: \[\left| {{\alpha _1} + {\alpha _2},{\alpha _2} + {\alpha _3},{\alpha _3} + {\alpha _4},{\alpha _4} + {\alpha _1}} \right|\] C: \[\left| {{\alpha _1},{\alpha _1} + {\alpha _2},{\alpha _1} + {\alpha _2} + {\alpha _3},{\alpha _1} + {\alpha _2} + {\alpha _3} + {\alpha _4}} \right|\] D: \[\left| {{\alpha _1} + {\alpha _2},{\alpha _2} + {\alpha _3},{\alpha _3} + {\alpha _4},{\alpha _4} - {\alpha _1}} \right|\]
- 设\( \alpha {\rm{ = }}\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right)\;A = \alpha {\alpha ^{T,}} \) ,则\( \left| {I - {A^n}} \right| = \) ( ) A: \( 1 + {2^n} \) B: \( 1 - {2^n} \) C: \( 1 + {3^n} \) D: \( 1 - {3^n} \)
- \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
内容
- 0
设\( A \)是3阶矩阵,若\( \left| {3A} \right| = 3 \),则\( \left| {2A} \right| = \)( ) A: 1 B: 2 C: \( {2 \over 3} \) D: \( {8 \over 9} \)
- 1
已知三阶矩阵\( A \)的特征值为\( {1 \over 2},{1 \over 3},{1 \over 4} \),且三阶矩阵\( B \)与\( A\)相似,则\( \left| { { B^{ - 1}} + E} \right| = \)______
- 2
求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- 3
设有向量组`\alpha _1, \alpha _2, \alpha _3, \alpha _4`,则向量组`\alpha _1 + \alpha _2,\alpha _2 + \alpha _3,\alpha _3 + \alpha _4,\alpha _4 + \alpha _1`( )
- 4
已知\(L\)为抛物线\({y^2} = x\) 上从点\(A\left( {1, - 1} \right)\) 到点\(B\left( {1,1} \right)\) 的一段弧,则\(\int_{\;L} {xyds} {\rm{ = }}\)( )。 A: \({3 \over 5}\) B: \({4 \over 3}\) C: \({5 \over 3}\) D: \({4 \over 5}\)