设\( \alpha {\rm{ = }}\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right)\;A = \alpha {\alpha ^{T,}} \) ,则\( \left| {I - {A^n}} \right| = \) ( )
A: \( 1 + {2^n} \)
B: \( 1 - {2^n} \)
C: \( 1 + {3^n} \)
D: \( 1 - {3^n} \)
A: \( 1 + {2^n} \)
B: \( 1 - {2^n} \)
C: \( 1 + {3^n} \)
D: \( 1 - {3^n} \)
举一反三
- 向量组\(\left( {\matrix{ { - 1} \cr 3 \cr 1 \cr } } \right),\left( {\matrix{ 2 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 4 \cr 1 \cr } } \right) \)线性相关.
- 设\( {\alpha _1} = {\left( {1,2, - a, - 3} \right)^T},{\alpha _2} = {\left( { - 3,2,4,1} \right)^T} \)且\( \left( { { \alpha _1},{\alpha _2}} \right) = - 1 \),则\( a = \)( ) A: \( - {2 \over 3} \) B: \( - {3 \over 4} \) C: \( - {1 \over 4} \) D: \( {1 \over 2} \)
- 向量组\({\alpha _1} = {\left( {1,1,1} \right)^T}{\kern 1pt} ,\;{\alpha _2} = {\left( {2,3,4} \right)^T},\,{\alpha _3} = {\left( {3,2,3} \right)^T},{\alpha _4} = {\left( {4,3,4} \right)^T}\)的一个极大无关组是( ) A: \({\alpha _1}\,,{\alpha _2}\) B: \({\alpha _1}\,,{\alpha _2},{\alpha _3}\) C: \({\alpha _2},{\alpha _3}\) D: \({\alpha _1}\,{\alpha _3}\)
- 设3阶实对称矩阵\( A \)的秩为2,且\( {A^2} - A = O \) ,则\( A \)相似于( ) A: \( \left( {\matrix{ 1 & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & {} & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \) C: \( \left( {\matrix{ { - 1} & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 1 & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \)
- `\alpha _j`为四阶行列式D的第j列,(j=1,2,3,4,),且D=-5,则下列行列式中,等于-10的是( ) A: \[\left| {2{\alpha _1},2{\alpha _2},2{\alpha _3},2{\alpha _4}} \right|\] B: \[\left| {{\alpha _1} + {\alpha _2},{\alpha _2} + {\alpha _3},{\alpha _3} + {\alpha _4},{\alpha _4} + {\alpha _1}} \right|\] C: \[\left| {{\alpha _1},{\alpha _1} + {\alpha _2},{\alpha _1} + {\alpha _2} + {\alpha _3},{\alpha _1} + {\alpha _2} + {\alpha _3} + {\alpha _4}} \right|\] D: \[\left| {{\alpha _1} + {\alpha _2},{\alpha _2} + {\alpha _3},{\alpha _3} + {\alpha _4},{\alpha _4} - {\alpha _1}} \right|\]