• 2022-06-19
    求曲面z=2x^2+2y^2及z=6-x^2-y^2所围成的立体体积
  • 两个方程联立得出在xoy坐标面上的投影即为区域D:x^2+y^2=2,用极坐标区域D为0《θ《2π,0《ρ《√2用二重积分体积为∫∫(D)[(6-x^2-y^2)-(2x^2+2y^2)]dxdy=∫∫(D)(6-3x^2-3y^2)dxdy=∫0~2πdθ∫0~√2(6-3ρ^2)ρdρ=2π*(3ρ^2-3/4ρ^4)|0~√2=2π*(3√2^2-3/4√2^4-0)=2π*3=6π
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/mzpytyjjjeyjejo.html

    内容

    • 0

      已有定义语句:int x=2,y=4,z=6;if(x>y) z=x;x=y;y=z;执行上述语句后x,y,z的值是____。 A: x=4,y=2,z=2 B: x=4,y=4,z=2 C: x=4,y=6,z=6 D: x=4,y=2,z=6

    • 1

      4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$

    • 2

      设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)

    • 3

      \( xoz \) 坐标面上的直线\( x = z - 2 \)绕\( z \)轴旋转而成的圆锥面的方程为( ) A: \( {x^2} - {y^2} = {(z - 2)^2} \) B: \( {x^2} + {y^2} = {(z - 2)^2} \) C: \( {z^2} + {y^2} = {(x - 2)^2} \) D: \( {z^2} + {x^2} = {(y - 2)^2} \)

    • 4

      在使用surf绘制空间曲面时,需要先生成网格点矩阵。若绘图区域为-2<x<2,-3<y<3,曲面方程为z=3*x*y^2,下列指令正确的是( ) A: x=-2:0.5:2; y=-3:0.5:3; z=3*x.*y.^2; surf(x,y,z) B: x=-2:0.5:2; y=-3:0.5:3; [x,y]=meshgrid(x,y); z=3*x.*y.^2; surf(x,y,z) C: x=-2:0.5:2; y=-3:0.5:3; z=3*x*y^2; surf(x,y,z) D: x=-2:0.5:2; y=-3:0.5:3; z=3*x.*y^2; surf(x,y,z)