举一反三
- 求由曲面z=x^2+2y^2及z=3-2x^2-y^2所围成的立体的体积
- 曲面z=√(2-x^2-y^2)及x^2+y^2=z所围成的立体的体积
- 【单选题】将xoy坐标面上的x 2 +y 2 =2x绕x轴旋转一周,生成的曲面方程为(),曲面名称为(). A. x 2 +y 2 +z 2 =2x,球面 B. x 2 +y 2 =2x ,柱面 C. x 2 +y 2 +z 2 =2,球面 D. x 2 +z 2 =2x,抛物面
- 求曲线z=根号(4-x^2-y^2)与z=根号3(x^2+y^2)所围立体体积
- 下列方程表示的曲面为旋转曲面的是( ). A: $x^2+2y^2+3z^2=1$ B: $2x^2-3y^2-3z^2=1$ C: $\displaystyle\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ D: $z^2=2x^2-2y^2$
内容
- 0
已有定义语句:int x=2,y=4,z=6;if(x>y) z=x;x=y;y=z;执行上述语句后x,y,z的值是____。 A: x=4,y=2,z=2 B: x=4,y=4,z=2 C: x=4,y=6,z=6 D: x=4,y=2,z=6
- 1
4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 2
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
- 3
\( xoz \) 坐标面上的直线\( x = z - 2 \)绕\( z \)轴旋转而成的圆锥面的方程为( ) A: \( {x^2} - {y^2} = {(z - 2)^2} \) B: \( {x^2} + {y^2} = {(z - 2)^2} \) C: \( {z^2} + {y^2} = {(x - 2)^2} \) D: \( {z^2} + {x^2} = {(y - 2)^2} \)
- 4
在使用surf绘制空间曲面时,需要先生成网格点矩阵。若绘图区域为-2<x<2,-3<y<3,曲面方程为z=3*x*y^2,下列指令正确的是( ) A: x=-2:0.5:2; y=-3:0.5:3; z=3*x.*y.^2; surf(x,y,z) B: x=-2:0.5:2; y=-3:0.5:3; [x,y]=meshgrid(x,y); z=3*x.*y.^2; surf(x,y,z) C: x=-2:0.5:2; y=-3:0.5:3; z=3*x*y^2; surf(x,y,z) D: x=-2:0.5:2; y=-3:0.5:3; z=3*x.*y^2; surf(x,y,z)