先求出半无界区域上波动方程的定解问题[tex=16.286x5.5]fnpmC2J6JmQBLyo5NmGAzz1EEFvh0W+KMVB3PRTO6PCE68CPHabueHXn53RXfqgSv6yqnPmHws7mdx/v1wD39H8TNSf4IS7/FerIbYVvvrjqRE86XgwXknsfdFBaIMo3BTKCZFTfeuS9s0zFtrDiOryNUqUhkPR5UsfiBNy72F5LOc44IDeCjAaZa4kGfp5jGGdk7GyJ3xjFTSqjBqP0Lg==[/tex]的解u(x,t),然后证明对任意c>0,极限[tex=5.929x1.857]MhC0sa4kP8ihnFHLNuEHS25qEA5Cb518i4FFAO8pXj9KLX20w+hXVQBY8P+o6ph/[/tex]存在,并且求出该极限.
举一反三
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 以下程序段实现的输出是()。for(i=0;i<;=9;i++)s[i]=i;for(i=9;i>;=0;i--)printf("%2d",s[i]);[/i][/i] A: 9 7 5 3 1 B: 1 3 5 7 9 C: 9 8 7 6 5 4 3 2 1 0 D: 0 1 2 3 4 5 6 7 8 9
- 输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81