解半无界空间中的拉普拉斯方程[tex=9.5x1.5]LeBJOn0cY/j7eY2pYKJiYemcoLCg5SLJ8VtV2DI+w64=[/tex]边界条件为: [tex=4.929x1.5]WfzXYNdOb3O1ndzxlvYEHgSqj47hp0VhMbr7lQc8FVY=[/tex]
举一反三
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 先求出半无界区域上波动方程的定解问题[tex=16.286x5.5]fnpmC2J6JmQBLyo5NmGAzz1EEFvh0W+KMVB3PRTO6PCE68CPHabueHXn53RXfqgSv6yqnPmHws7mdx/v1wD39H8TNSf4IS7/FerIbYVvvrjqRE86XgwXknsfdFBaIMo3BTKCZFTfeuS9s0zFtrDiOryNUqUhkPR5UsfiBNy72F5LOc44IDeCjAaZa4kGfp5jGGdk7GyJ3xjFTSqjBqP0Lg==[/tex]的解u(x,t),然后证明对任意c>0,极限[tex=5.929x1.857]MhC0sa4kP8ihnFHLNuEHS25qEA5Cb518i4FFAO8pXj9KLX20w+hXVQBY8P+o6ph/[/tex]存在,并且求出该极限.