证明 Dirichlet 引理对[tex=2.071x1.357]ueTjx/SOqEAeenUClXNJOg==[/tex] 是分段单调有界函数的情况依然成立。
举一反三
- 证明:Dirichlet函数[tex=9.357x3.357]ImXdzIDzWK1GOTy18VIpFLKO+pLmI8LOhgl1b6Ci1lPhCFF1OAVypsqmNOG1pb09vZGbekiEnvl5dHVQ8qdP2TLnjx4yxIc8Q0tfhRweitaBySwigPoTvup5Tzg1UUJVTNtNR082I9r/ZCqfOFU9CmVuTgxTmNe9huJCUQN8tyI=[/tex]在[tex=4.643x1.357]3+NDETjbtRnj+mD3xG2zviOhqLdK3LTtKMvqcRw22dQ=[/tex]的任一点x处doubukedao
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]连续、单调、有界,则函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=2.643x1.286]PGm4xHJaiwTHdGYen/RN9Q==[/tex]一致连续。
- 证明: 函数 [tex=3.929x2.571]Z/UNAHJniLWHvpDbITkMMsIuiOXjobKOEELUH32RKGo=[/tex] 是有界函数.
- 利用单调有界必有极限证明[tex=8.214x1.429]XGangoFoasfVen1rHt2gH98BYk1KoJR+Xf8oFRN3aE4=[/tex]必有极限
- 若函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内单调,则在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 必不存在极值.