举一反三
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为度量空间。证明:[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]中收敛序列有唯一的极限。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为距离空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中子集,令 [tex=10.643x1.357]5cM/LvJqoCikO7A5c+WCIGNRUqezDJxu3zpxuE11UPKaIvCUSRrZmDCbItUQwXHvm/mb7WPRr4/CaMIdGTZddg==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上连续函数.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 设 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 为[tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 上正常算子 为[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的笛卡尔分解,证明 :[tex=5.143x1.571]x9wKpvU10E+T/NP1C/Wc1BaKWbTkvexJKc3Q///yoF6yLKSWLfRztyUQP/HoY+WN[/tex].
- 设[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 为[tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上正常算子 [tex=4.286x1.214]AFyvUm8khRRS3mDqf83Wrw==[/tex] 为 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的笛卡尔分解,证明 : [tex=7.143x1.571]Iu3TFh/FXBXGRUb99yhy9zrEGn7UXZuV7FzmZaO5ZHdV5SDBGAjw4atLmtxxL+vP[/tex]
内容
- 0
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。
- 1
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[tex=8.5x2.143]Ca+H1VjqhIFFe3JC2XAU2rOuJUFZivOezxxgZEpNix4wWRHa7Q2XYP2aHPPIgOy/[/tex],试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数.
- 2
已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
- 3
设[tex=2.286x1.357]jro22R1VbAobj1HjELMO/w==[/tex]为非空集合[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的幂集 (即[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的所有子集构成的集合 ),试求[tex=2.286x1.357]jro22R1VbAobj1HjELMO/w==[/tex]的阶。
- 4
设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=12.857x2.429]U8EmrNdvLYP7VnO9GCL0WKC9lw90KXXShABMLxBUPz+883V6ZlmOKYenQdRp5qeYe2K4EeF5ruQqhPOElrvMWA==[/tex],求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望与方差.