设 [tex=4.0x1.214]gqm0mWUCKdOARf086AW0480jEQ3Xm81NfZLfINt8SrF3Bc8hkj34rbCcz4E0io/L[/tex] 试证1) [tex=2.571x1.143]WdbVvotJqaIEmmV0vNMW+jEQ83lsj5/Yim9TL3pJrZU=[/tex] 当且仅当 [tex=4.286x1.143]80Wj0uAKV+7pqHZEfv32mPI23ILOBLq3IKynnNCFOURqLDiirzP1JdUlbdFmI9kX[/tex], 且 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 的特征根都是实数;2) [tex=3.286x1.286]V5aIETDsYc6y76PNWXSA4NaDDrtbuCAhe1mIrkwO9SM=[/tex] 当且仅当 [tex=4.286x1.143]80Wj0uAKV+7pqHZEfv32mPI23ILOBLq3IKynnNCFOURqLDiirzP1JdUlbdFmI9kX[/tex], 且 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 的特征根都是纯虚数;3) [tex=3.5x1.214]kePI5SUwTOUcyZnmRV2Ep1OrfmgdKBaQ/84vMQv9BMA=[/tex] 当且仅当 [tex=4.286x1.143]80Wj0uAKV+7pqHZEfv32mPI23ILOBLq3IKynnNCFOURqLDiirzP1JdUlbdFmI9kX[/tex], 且 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 的特征根的模为 1 .
举一反三
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- 设 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵. 试证 [tex=0.786x1.0]VCFC+VP8w+sMJeRvvNnjBw==[/tex] 为正定矩阵当且仅当对任何正定 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 及实数 [tex=9.714x1.286]oUHjocG8NyrFpz5xluPGjVBwMqdo0SsQbqcFfRrPl5De1mcdBqGoXCbTQU2+CJKBWCubJ4DGp1EJ8LN1Lp9fGQ==[/tex], [tex=3.5x1.214]OwSXGS2Xb/MLUGvk44HeeUvDzEABepl8Va4Fc3Yyq5w=[/tex] 是正定矩阵.
- 设 [tex=5.571x1.214]eJy7VhH65VRts6bfN/wW0qSLr6tx3UnjbIVZOYmgwsesZVe3LfON1m5XC/ZWRrMkgjy0XGvwUDiz8worWVhiiA==[/tex] 且 [tex=6.0x1.429]VfJMl/JRDhUg4N/j0auYnx91sJmE1DpqMHmFSN4UNcv1AaUPUDKP71ackj4WfGz6cmsXyPO/7LbhB5qW3HMOIQ==[/tex] 证明1) [tex=5.0x1.357]PF4+0fQrOtrBMOGLTbiojWHD9HeQmUzzlH8ydOx6ZwA=[/tex] 当且仅当 [tex=6.714x1.214]t4fgzvN247twKwYp+jekqaSM2F1I59tfyLmarSTXF4jE9lVv1R3jnvrDqwnb09fgUQmV/i9jvGb1VP+NNe+qqJa017u08tzfXp2iJTfc89g=[/tex]2) [tex=5.429x1.0]bm3Mth7dIBkvW5h/YcCTdo75g2LQal/3MslYLuzIX7ljVLOMmokJVQ3pqIFz3ScpDLxYC3YRlx9OGboSSdFkPA==[/tex] 当且仅当 [tex=6.429x1.214]t4fgzvN247twKwYp+jekqd5tQX6Ir1tVtuMZ4EYdcuM175TWc9SLTF5enyW9KACLFLU5unY24y0o6hpa7IDat+mjWrcIYnd8nNNZzeFfjL8=[/tex].
- 无向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是欧拉图,当且仅当[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]满足下面4个条件中的哪一个?(1)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的所有结点的次数为偶数;(2)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的所有结点的次数为奇数;(3)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]连通且所有结点的次数为偶数;(4)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]连通且所有结点的次数为奇数.
- 证明定理:对于方阵[tex=0.786x1.0]76HZs7A5Sjy4tIkIUmevRA==[/tex],[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是可逆矩阵当且仅当0不是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值.