设 \( A \)是 \( 3 \times 3 \)矩阵, \( B \)是 \( 4 \times 4 \)矩阵,且\( \left| A \right| = 1,\,\left| B \right| = - 2, \) 则\( \left| {\left| B \right|A} \right| = \) ______
举一反三
- 设\( \left| { { x_0}} \right| = 4 \),\( A \)为正交矩阵,则\( \left| {A{x_0}} \right| = \)______
- 设`\A`是`\m \times n`矩阵,`\m` 小于 `\n`,则必有 ( ) A: \[\left| {{A^T}A} \right| \ne 0\] B: \[\left| {{A^T}A} \right| = 0\] C: \[\left| {A{A^T}} \right| > 0\] D: \[\left| {A{A^T}} \right| < 0\]
- 函数\(y = {\left( { - 2x + 1} \right)^4}\)的导数为( ). A: \( - 8{\left( { - 2x + 1} \right)^3}\) B: \(8{\left( { - 2x + 1} \right)^3}\) C: \(4{\left( { - 2x + 1} \right)^3}\) D: \(- 4{\left( { - 2x + 1} \right)^3}\)
- 设 \( A \)为 \( m \times n \)矩阵, \( B \)为 \( n \times m \)矩阵,则下列结论中不正确的是( ) A: \( {\left( {AB} \right)^T} = {B^T}{A^T} \) B: \( \left| {AB} \right| = \left| {BA} \right| \) C: \( tr\left( {AB} \right) = tr\left( {BA} \right) \) D: \( {A^T}A,\;B{B^T} \)均为\(n\)阶对称阵
- 设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______