设\( \left| { { x_0}} \right| = 4 \),\( A \)为正交矩阵,则\( \left| {A{x_0}} \right| = \)______
举一反三
- 若幂级数\(\sum\limits_{n = 1}^\infty { { a_n}} {x^n}\)在\(x = {x_0}\)处发散,则该级数的收敛半径满足( )。 A: \(R = \left| { { x_0}} \right|\) B: \(R < \left| { { x_0}} \right|\) C: \(R > \left| { { x_0}} \right|\) D: \(R \le \left| { { x_0}} \right|\)
- 设\(n\)阶矩阵\(A\)的伴随矩阵为\({A^ * }\),若\(\left| A \right| = 0\),则\(\left| { { A^ * }} \right| \ne 0\).
- 设\( A \)为\( n \) 阶方阵, \( B \)是\( A \)经过若干次初等变换后得到的矩阵,则( ) A: \( \left| A \right| = \left| B \right| \) B: \( \left| A \right| \ne \left| B \right| \) C: 若\( \left| A \right| = 0 \) ,则必有 \( \left| B \right| = 0 \) D: 若\( \left| A \right| > 0 \),则一定有\( \left| B \right| > 0 \)
- (4). 设每年袭击某地的台风次数 \( X\sim P\left( \lambda \right) \),且\( P\left\{ {X=1} \right\}=P\left\{ {X=2} \right\} \),则概率 \(P\left\{ {X=4} \right\} =\)()。
- 函数\(f\left( x \right)\)在点\(x = {x_0}\)连续是在点\(x = {x_0}\)处可微的( )。 A: 充要 B: 充分 C: 必要 D: 无关