写出卡诺图所示的逻辑函数式( )[img=383x230]18033f4d186b5e5.png[/img]
A: [img=110x24]18033f4d216a799.png[/img]
B: [img=111x24]18033f4d2a4e5fc.png[/img]
C: [img=111x24]18033f4d33061b8.png[/img]
D: [img=111x24]18033f4d3b6b05d.png[/img]
A: [img=110x24]18033f4d216a799.png[/img]
B: [img=111x24]18033f4d2a4e5fc.png[/img]
C: [img=111x24]18033f4d33061b8.png[/img]
D: [img=111x24]18033f4d3b6b05d.png[/img]
举一反三
- 函数[img=196x27]17de92706aff834.png[/img],已知f(x)在x=-3处取得极值,则 a等于( ) A: 2 B: 3 C: 4 D: 5
- 设[img=127x53]17f1b3d6db98b83.jpg[/img],f(x)=arctanΧ,则[img=56x55]17f1b3d82842941.jpg[/img]=()。 A: π B: 3π/4 C: -3π/4 D: 2π
- 设f(x)为连续函数,且 [img=217x49]18034a50d8b1b92.png[/img] 则[img=70x25]18034a50e196c62.png[/img] A: 5 B: 4 C: 0 D: -5
- 已知y=f(x)是奇函数,当x≥0时,[img=62x34]17e0bf81aac3b63.png[/img],则f(-8)的值是( ) A: -8 B: -4 C: 4 D: 8
- 设正态分布N(0, 4)的分布函数为F(x),则F’(x) = ( ). A: [img=73x63]1802f2c47707b95.png[/img] B: [img=86x65]1802f2c47feb07a.png[/img] C: [img=75x58]1802f2c4884644b.png[/img] D: [img=87x58]1802f2c48fffbbf.png[/img]