设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个非空集合, [tex=4.857x1.143]z052PP7gyyiVKvz9biY/jdWqs6cbdivpUgYEGKAjWGo=[/tex] 。如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上是对称的,传递的,下面的推导说明[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上是自反的:对任意的[tex=2.857x1.214]6mY+0xpX/nibmCX2DD2raA==[/tex], 由于[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是对称的,有:[tex=5.0x1.0]fECwdJzb8JORZlNlDD3U6QG5kSvofx2LUNwNpt/0EP8=[/tex]于是[tex=7.714x1.214]if+9iNP2VGTseW8oZkH+B/UjQKIjvo2+qp3YSg0LNKZG0Sj7K5P40AgoMd28ibv7[/tex] 又利用 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是传递的,得:[tex=7.5x1.0]ywASEeIQn19IIMUajVo1PB1zHR8o2HSr1lNEmWU1iCsu47hZdWytbXGZIkGi4HlU[/tex]从而说明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是自反的。上述推导正确吗? 请阐明理由。
举一反三
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反和传递的关系,证明[tex=4.143x1.214]wI8xtIa6pF8inYWYe3KeRifrKOkzkU+85PIg1rCbYqM=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反关系,证明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上等价关系的充分必要条件是 :若 [tex=5.286x1.214]X6zuQfhf0cOjWP7w5/g3vg==[/tex] 且[tex=5.5x1.214]Ou7tfIX47CQpyquED6JZzw==[/tex] 则有[tex=5.429x1.214]r9+YcxzdBj67QSYMAva2dw==[/tex]
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上的关系,证明若 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是自反和传递的,则 [tex=3.857x1.0]8joLZ8gJQquajh/o+JBLnQ==[/tex]其逆真吗?
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的元素按[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的等价类顺序排列,请指出此等价关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的关系矩阵 [tex=1.571x1.214]vGYzHX53AOjsp+qXDwbdhg==[/tex] 有何特征?
- 设 [tex=6.429x1.357]klM2zPlpUvR9h+kvfCE1fhUIUP7Sz0ZGhI/sOPx4vG4=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上的等价关系, 且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上所构成的等价类是 [tex=5.357x1.357]YUAvYM+3tTbTdgG9W2P+R2LuZ1txekHGBdI3ojQ5ctA=[/tex].求[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex].