满足方程|x-1|-2|x-2|+3|x-3|=4的有理数x有多少个( )
A: 1
B: 2
C: 3
D: 无数
A: 1
B: 2
C: 3
D: 无数
D
举一反三
- 1.5设函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程[br][/br]f ‘(x)=0有( )个实根。 A: 1 B: 2 C: 3 D: 4
- 下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。
- $(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$
- 设$f(x)$是三次首一多项式。若$x-1$除$f(x)$余 $1$,$x-2$除$f(x)$余 $2$,$x-3$除$f(x)$余 $3$,则 $f(x)$ =( )。 A: $x^{3}-6x^{2}+12x-6$; B: $x^{3}-6x^{2}+11x-6$; C: $x^{3}-5x^{2}+12x-6$; D: $x^{3}-6x^{2}+12x-5$.
- 设f(x)=x(x-1)(x-2)(x-3),则f’(0)=() A: -6 B: -2 C: 3 D: -3
内容
- 0
函数f(x)=x(x-1)(x-2)(x-3)(x-4),则方程f′(x)=0实根的个数为() A: 2 B: 3 C: 4 D: 5
- 1
设f(x)=(x-1)(x-2)(x-3),则方程f′(x)=0在(0,3)内的根的个数为 (56) 。 A: 1 B: 2 C: 3 D: 4
- 2
函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数对应的方程有()个实根, 并指出它们所在的区间. A: f′(x)=0有三个实根,且x1∈(1, 2),x2∈(2, 3),x3∈(3, 4). B: f′(x)=0有两个实根,且x1∈(1, 2),x2∈(2, 3). C: f′(x)=0有一个实根,且x1∈(1, 2). D: f′(x)=0没有实根.
- 3
方程(x+1)(x-3)=5的解是()。 A: x<sub>1</sub>=1,x<sub>2</sub>=-3 B: x<sub>1</sub>=4,x<sub>2</sub>=-2 C: x<sub>1</sub>=-1,x<sub>2</sub>=3 D: x<sub>1</sub>=-4,x<sub>2</sub>=2
- 4
已知集合A={x|(x+1)(x-3)<0},B=|x||x|>2},则A∩B等于______。 A: {x|-2<x<-1} B: {x|-1<x<2} C: {x|2<x<3} D: {x|-2<x<3}