对下列实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex], 求正交矩阵 [tex=1.071x1.214]vAEc8qQdKrZmGqsLQIn4YQ==[/tex] 使 [tex=3.286x1.429]orCtzMk8SWieHa/vBu4mbS43qPO01VgJZhkP1GoCAHM=[/tex] 为对角矩阵。[tex=7.643x3.5]lRsc+7xS9mVs48x3DLiOg8XzOHkogXFD64Ye6sE2MSlZvOV+jLoZLXga6+wXZRHGq/9wPa1m/E9mmVKFAvOjREA4EAwO7TgUxbJ7PtfL+uvpNsRZThExsMbhkiftuSro[/tex]
举一反三
- 对下列实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex], 求正交矩阵 [tex=1.071x1.214]vAEc8qQdKrZmGqsLQIn4YQ==[/tex] 使 [tex=3.286x1.429]orCtzMk8SWieHa/vBu4mbS43qPO01VgJZhkP1GoCAHM=[/tex] 为对角矩阵。[tex=10.286x3.929]3BT1BgBZQ5uJXxD5dg+w28scEstuPZXrNSe5WSGKNFAIobr0h8wNjRS0+CFKWRR8rvyZ6VhWz2jBMIL2oSjKU37ykrhXFSnTEudcK8NEJBwWo6xJH+JUGgvK5U9/H/Wg[/tex]
- 给定实对称矩阵[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2soQx9WPrar9H1A37+PQK4lX1kffueNP+fMtpz7JLNNPO6OEgXrI9F2HCqGKrYfsnvzSmNgpVENbi7iJNwlB/K9OsTqGQurDgb9Spfzx1cr1G[/tex],(1) 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值与特征向量; (2) 求正交矩阵[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex],使[tex=6.857x1.429]Ey5wP5R8vUsiOu7qSzYJ0yMBkLd5ultG1WdTVbXSSDM=[/tex]为对角矩阵.
- 对于下列实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],求正交矩阵[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex],使[tex=3.0x1.214]3LPwI+Ms8uWX4W/wZJKnrQ==[/tex]为对角矩阵:[tex=8.571x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iXIsfuTxHnjB5FW20E+IlcYCsQlk+1StM0NRY/eomQlo81btRtBoRS83IigXhahzWkoOaSWLYzjrUkt9UPITWH[/tex].
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设三阶实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的各行元素之和均为 3, 向量 [tex=12.286x1.429]JNj7POW+1qKsJ6FpVnVQ80+mAxITNuEZTnpPv1rhk2OmxFjFFZ8rSNAN/r64/x+eLzBtgKlmK9VZAE6BAqyN4Q==[/tex] 是线性方程组 [tex=2.643x1.0]Luk4dywqmDJgAqza1pE8oQ==[/tex] 的两个解.(1) 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值和特征向量;(2) 求正交矩阵 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 和对角矩阵 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex], 使 [tex=4.214x1.357]Ang224t0ZkPRN0Lf6Z6iAE2cpa5ebyWchty9j+k3c2w=[/tex].