消费x、y两种商品的消费者的效用函数为:[tex=2.643x1.286]oXBqffq5WWB1dgBM5rzs/A==[/tex],x、y的价格均为4,消费者的收入为144。若x的价格上升到9,对两种商品的需求有何变化?
举一反三
- 消费x、y两种商品的消费者的效用函数为:[tex=2.643x1.286]oXBqffq5WWB1dgBM5rzs/A==[/tex],x、y的价格均为4,消费者的收入为144。求该消费者的需求水平及效用水平。
- 消费x、y两种商品的消费者的效用函数为:[tex=2.643x1.286]oXBqffq5WWB1dgBM5rzs/A==[/tex],x、y的价格均为4,消费者的收入为144。求x价格上升至9,所带来的替代效应和收入效应。
- 消费x、y两种商品的消费者的效用函数为:[tex=2.643x1.286]oXBqffq5WWB1dgBM5rzs/A==[/tex],x、y的价格均为4,消费者的收入为144。x价格上升至9后,若要维持当初的效用水平,消费者的收入最少应达到多少?
- 消费X、Y两种商品的效用函数为 [tex=3.429x1.0]I5nmehZncwQPz20FU3nqIA==[/tex],X、Y 的价格均为4,消费者的收入为144,求 X 价格上升为9,所带来的替代效应和收入效应。
- 消费 X, Y 两种商品的消费者的效用函数为 [tex=4.5x1.214]/Y/yPE2vc4qs2NnYWN3pzQ==[/tex], 两种商品的价格分别为 [tex=6.714x1.214]sASmArVQ5/PNh2n6hy8bX3QO5YhNHtIEzSQ66EIsyys=[/tex] 消费者收入为 [tex=3.357x1.0]AgY82hUQUiH2DrQR8sckYA==[/tex], 求其对 X, Y 的需求量。