• 2022-06-09
    设 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 为西方阵, 且 [tex=4.714x1.214]4tHQHEd0dufnKOwI+Kp8pg==[/tex], 证明:  [tex=8.857x1.357]kW3CK86ROTQQBMdYOc4LuGFlqKWRL7UNAR+EcM87HznPj1NPgaIV/KUoqKAEUrgsUa2lWulRzRIobgqGKY5KXDfbnGxcUsPzGO+mV1CcEZ8=[/tex]
  • 证明 [tex=25.571x1.571]Q34NtRO3eaan0oG6bIn/VMy7IufrbcE6YZ3b5ggB0GP0Vg7/ojbZxQ/sAL+ENt41orMT09Y66wTx9tLf5tXLQZdrlXGvXq4DRdRyhphhz2uvcH8voe3YUOUArsBMSmoVESwyk3I7oqqNpwyl9JFW0lSB4gJk3xMc7aVQeF740HuwccTHCwO6+4t+fByfmRkZ[/tex] 因此[tex=23.0x1.571]79Wd/JsaQKi3RBB3vwr837x4csE1Zwz6NltjiKXu+jBQIHl02a44mqDPHKAhbvzVxc8i7NAoe5Su6KeTkvAi6I8BVCkYEdVcRxUj+7jBU/L+yZSFv/a1ItdU/vA1Ezo+bgp3bG9AUofZMZ2BPcGRvnmaztw0fpuN2NG5IRprmbszzAfIjxR/CHCbXEWmd54XqC7D7S6RnYHQM2n8eI/tlCzGOB9vdhKEkwkbOExxhGY=[/tex]

    内容

    • 0

      设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。

    • 1

       对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7;           (2) 8;               (3)10 ;(4) 14 ;         (5) 15             (6) 18 。

    • 2

      设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]

    • 3

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]

    • 4

      由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.