• 2022-06-09
    用[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换的性质和常用[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换公式求下列信号的双边[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换。[tex=10.071x3.0]YLxjEL8mCw3rmOBMk8uvOO/0FRDLa2nZU7fcsNW+LNhLlEYQlCCIN+rBnsq6+uJpIjhvb212zdpOV0ZV6KFJtkdSzwwRnwkBl9FAC2AFfgk=[/tex]
  • 因为[tex=19.143x6.786]UD5Uh4Sf0JOreHxD3gt15lN+prfWfHwWaq7GBC3YMH/5OQNZOEuwClFpnx0liQoQIFzjYJXkX9WqlnVCeSNAXAOHS8ZPupTy82CN7Pe8j+kDXGGHB1aO10/YE2/DldG++2CvUb83s0lF0+xIgnKHD6Mv+9goIbzPX5eF3HaqUCQCC9Rm8TIUNtlWzGP/qP4XXG9fCzSXQTIQCUNuLS7YmGLnX1jgUGfbyrfWvERgnr3hTQ696sgs+HixTNqrU0agEv165AqenaOq1Ts2RkZPvQxqX/xDzTMBJ50N556xf6d3nXsgAusq0BSm+zaleY8vKjkbh2Nhxx1RqJeuWoaoYG/9C2mhXWTLFvZH3jx/5HpEP69FFPHavKWDSbgiAMqx[/tex]所以[tex=17.5x5.857]0UEmMIoeQGWdmcaLKsEkfj34SZbfsP4mclafLcfBrg73RbILdpDmpwlZmLHlu30hG6hDQbZwHcUYMZvWCn6E69b8JUNw+yTsKcRTJC4LZmSott28r8ZfMyVRFUHC17dsJwGaakTdClVmXdX8w5ADoMnIeGLDGuXg7gM8AoAWccPCLPtI49SEUBqGMr4rwjpX7XfrAfMpblzJd/T7bP5Oo8Q7EaTu9reEl8oGiYuQqIQ=[/tex]

    内容

    • 0

      应用性质和常用变换,求下列信号的单边[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换。[tex=8.714x2.357]yTtzs0uGXdZFBfI2tGcU90pu0MQTBkEeu6fY18Oovwi9CbDnKdasRSOnAxiwNDuh7n29rYtj0HwvO7IomQYi8g==[/tex]

    • 1

      应用性质和常用变换,求下列信号的单边[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换。[tex=6.143x1.357]adA0OqERv9DVN4FTleKA5TJjw7klqlv+RyJdix/EL1M=[/tex]

    • 2

      求下列函数的[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换:[tex=3.5x1.357]j1OJxxVtxl9vayr8Q8FVEg==[/tex]

    • 3

      求下列函数的[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换:[tex=2.857x1.357]wceHS0irdiKubCx0IsjY+Q==[/tex]

    • 4

      求下列序列的[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex]变换和收敛域[tex=10.786x2.786]5ipjI0CM2ngAbGND1jDprCnYrb2ZYGuD5kw71PZnEvzMqKGVpjeBkbROG9TSAzzE[/tex]