y = sin x ,[img=108x92]17d62358cff6cb6.png[/img] =[img=316x163]17d62358e2f276c.png[/img]。( )
举一反三
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
- 求不定积分[img=132x48]17da6537fc8dad6.png[/img]; ( ) A: -(4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) B: (4*(sin(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) C: (4*(cos(x/2)/2 + 2*sin(x/2)))/(17*exp(2*x)) D: (4*(cos(x/2)/2 + 2*cos(x/2)))/(17*exp(2*x))
- 采用蒙特卡洛(Monte Carlo)方法,计算1≤x≤2范围内曲线 [img=68x27]1803336d543a2fa.png[/img]与[img=53x22]1803336d5b71770.png[/img]之间的近似面积(如下图阴影部分),那么随机数x,y的取值范围分别为( )[img=560x420]1803336d65905cb.png[/img] A: x∈[1,2],y∈[1/5, 6] B: x∈[0,2],y∈[1/5, 6] C: x∈[1,2],y∈[2/5, 6] D: x∈[1,2],y∈[2, 6]
- 采用蒙特卡洛(Monte Carlo)方法,计算1≤x≤2范围内曲线 [img=68x27]1802f090d78b428.png[/img]与[img=53x22]1802f090dfcb883.png[/img]之间的近似面积(如下图阴影部分),那么随机数x,y的取值范围分别为( )[img=560x420]1802f090eaf7113.png[/img] A: x∈[1,2],y∈[1/5, 6] B: x∈[0,2],y∈[1/5, 6] C: x∈[1,2],y∈[2/5, 6] D: x∈[1,2],y∈[2, 6]
- 采用蒙特卡洛(Monte Carlo)方法,计算1≤x≤2范围内曲线 [img=68x27]180320d3f2926c8.png[/img]与[img=53x22]180320d3fac1bef.png[/img]之间的近似面积(如下图阴影部分),那么随机数x,y的取值范围分别为( )[img=560x420]180320d4054324b.png[/img] A: x∈[1,2],y∈[1/5, 6] B: x∈[0,2],y∈[1/5, 6] C: x∈[1,2],y∈[2/5, 6] D: x∈[1,2],y∈[2, 6]