举一反三
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 给定实对称矩阵[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2soQx9WPrar9H1A37+PQK4lX1kffueNP+fMtpz7JLNNPO6OEgXrI9F2HCqGKrYfsnvzSmNgpVENbi7iJNwlB/K9OsTqGQurDgb9Spfzx1cr1G[/tex],(1) 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值与特征向量; (2) 求正交矩阵[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex],使[tex=6.857x1.429]Ey5wP5R8vUsiOu7qSzYJ0yMBkLd5ultG1WdTVbXSSDM=[/tex]为对角矩阵.
- 已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 设三阶实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的各行元素之和均为 3, 向量 [tex=12.286x1.429]JNj7POW+1qKsJ6FpVnVQ80+mAxITNuEZTnpPv1rhk2OmxFjFFZ8rSNAN/r64/x+eLzBtgKlmK9VZAE6BAqyN4Q==[/tex] 是线性方程组 [tex=2.643x1.0]Luk4dywqmDJgAqza1pE8oQ==[/tex] 的两个解.(1) 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值和特征向量;(2) 求正交矩阵 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 和对角矩阵 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex], 使 [tex=4.214x1.357]Ang224t0ZkPRN0Lf6Z6iAE2cpa5ebyWchty9j+k3c2w=[/tex].
内容
- 0
证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是上三角矩阵,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对角矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的主对角元为1或-1.
- 1
对下列实对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 求正交矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex], 使得[tex=3.357x1.286]TvRsUv5t/3lJOPEdcGcONfuVM4C/bLaP8ZJtWRinRXA=[/tex]为对角矩阵:[tex=6.214x2.786]sSXBpxJWudVpH1R35o4LnE0bLZnSPEoDNmtl5XLvZQ81q6AbPwVhJ0ckZM/g2nUxqJrc7JTIzM2sUXDRpC7mKQ==[/tex]
- 2
设 [tex=9.286x2.786]sSXBpxJWudVpH1R35o4LnJ0CwLYm+liMg0v7UbhugeQm8lKMekXMHYVK9MTeDPLcZt09KaVARX8TckEElfDKL0TKB+vQVoiioUgk7mA0DkU=[/tex],(1)求一个可逆矩阵 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] ,使 [tex=1.5x1.286]0BVMXR2+xiAYG6dcOvG1Ng==[/tex] 为行最简形;(2)求一个可逆矩阵 [tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex] ,使 [tex=2.143x1.286]rtbaiB/OCT0oYNIPCveM3Q==[/tex] 为行最简形 .
- 3
证明定理(1)单位矩阵是正交矩阵;(2)两个正交矩阵的乘积是正交矩阵;(3)正交矩阵的逆矩阵是正交矩阵;(4)若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是正交矩阵,则[tex=3.857x1.357]sJY8tRid7wbV3Z5twsnxVw==[/tex].
- 4
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为3阶矩阵,满足[tex=14.214x1.357]jZXpielExdVq250XLqu7h6LuoRAFq0f0w0Z1fVS42B0=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值