若F(jω)=F[f(t)],F(s)=L[f(t)],a≠0,则以下式子正确的是[img=452x67]17e0b70c1456e6f.png[/img]
A: A
B: B
C: C
D: D
A: A
B: B
C: C
D: D
举一反三
- 若\(L[f(t)]=F(s)\),\(L[g(t)]=G(s)\)则\(L[f(t)*g(t)]\)为( ) A: \(F(s)\cdot G(s)\) B: \(F(s)+G(s)\) C: \(F(s)*G(s)\)
- 设$L[f(t)]=F(s)$,则下列公式中,不正确的是 A: $f(t)=\frac{(-1)^n}{t^n}L^{-1}[F^{(n)}(s)]$ B: $f'(t)=L^{-1}[sF(s)]-f(0)\delta (t)$ C: $\int_0^t f(t)dt=L^{-1}[\frac{F(s)}{s}]$ D: $e^{at}f(t)=L^{-1}[F(s+a)]$
- 若(L[f(t)]=F(s)),(L[g(t)]=G(s))则(L[f(t)*g(t)])为( )</p></p>
- float f[][][] = new float[3][][]; float f0 = 1.0f; float[][] farray = new float[1][1]; What is valid?() A: f[0] = f0; B: f[0] = farray; C: f[0] = farray[0]; D: f[0] = farray[0][0];
- f(t+T)=f(t),t>0,且f(t)在一个周期上是连续的或分段连续的,则L[f(t)]=_________ (Re(s)>0) A: [img=152x52]180332c5bae38f6.png[/img] B: [img=162x52]180332c5c6e6b1a.png[/img] C: [img=162x52]180332c5d151748.png[/img] D: [img=172x52]180332c5dbeb145.png[/img]