设,求f(3),f(0),f(-0.5).
举一反三
- 随机变量X在区间(-1,2)上均匀分布,F(x)是X的分布函数,则以下结果正确的是 A: F(0.5)=0.5 B: F(1)=2/3 C: F(0)=0 D: F(-0.5)=0.5 E: F(1)=1/3 F: F(1.5)=3/4 G: F(2)=0 H: F(3)=0
- 设f(x)连续,且f(0)=0,f"(0)=2,求
- 已知f(x)是偶函数,且在区间[0,+∞)上是增函数,则f(-0.5),f(-1),f(0)的大小关系是( ) A: f(-0.5)<f(0)<f(-1) B: f(-1)<f(-0.5)<f(0) C: f(0)<f(-0.5)<f(-1) D: f(-1)<f(0)<f(-0.5)
- 设f(x)=x2+bx+x满足关系式f(1+x)=f(1-x),则下述结论中,正确的是( ). A: f(0)>f(1)>f(3) B: f(1)>f(0)>f(3) C: f(3)>f(1)>f(0) D: f(3)>f(0)>f(1) E: f(1)>f(3)>f(0)
- 已知f(x)是偶函数,且在区间[0,1]上是增函数,则f(-0.5),f(-1),f(0)的大小关系是( )A、f(-0.5)<f(0)<f(1)B、f(-1)<f(-0.5)<f(0)C、f(0)<f(-0.5)<f(-1)D、f(-1)<f(0)<f(-0.5)