已知一组正数x1,x2,x3,x4,x5的方差S2=15(x21+x22+x23+x24+x25-20),则关于数据x1+2,x2+2,x3+2,x4+2,x5+2的说法:(1)方差为S2;(2)平均数为2;(3)平均数为4;(4)方差为4S2,其中正确的说法是( )
举一反三
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是:
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
- 函数\(y = {x^{ - 4}}{\rm{ + }}2{x^3} - 2x\)的导数为( ). A: \(4{x^3} + 6{x^2} - 2\) B: \( - 4{x^{ - 5}} + 6{x^2} - 2\) C: \( - 4{x^{ - 3}} + 6{x^2} - 2\) D: \( - 4{x^3} + 6{x^2} - 2\)
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 到matlab上运行一下,得到的结果,x是:
- 求不定积分[img=121x54]17da653839aa6ae.png[/img]; ( ) A: log(x^2 + 3*x + 25/4)/4 + (5*atan(x/2 + 3/4))/4 B: log(x^2 + 3*x + 25/4)/4 C: (5*atan(x/2 + 3/4))/4 D: log(x^2 + 3*x + 25/4)/4 - (5*atan(x/2 + 3/4))/4