• 2022-06-08
    [tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]由方程[tex=6.214x1.286]HGTClIERLxAl2/3/hxPeze5n9iOMYathD9+O9eiqRT4=[/tex]确定,求[tex=1.0x1.286]iORH52xPIOLb1OULnXzR2Dh7Ik56AW6asRgzyBFipaE=[/tex] .
  • [b]解[/b]     方程两端同时求两次导,得[tex=6.714x1.286]Ws6SPsHOUuzCPWZCvgFnBsPswM7SdLRepZsqBWZ/FEk=[/tex][tex=3.643x1.286]9uxmi20Dek4FfyUKK9vr6Wzh1AnqRakBD6mJ9TC/2CLf9kFRj2MiTbZ6h28HxU+x[/tex],[tex=2.071x1.286]Ei2PZQl92La73hUrygebc/ZD990U9naYc2XQ/S6Ssz4=[/tex][tex=5.286x1.286]EQ8hkDmVTExQ+xZsJllIQ/Bh3hIwV0CkHObpBJ2tmhM=[/tex][tex=4.929x1.286]TQy6C1PKSbKwypnb0bA6ht9O7RswTTOn0LR/0smusEQ=[/tex][tex=4.571x1.357]bon02AGfT6qQhhDEONhGt0+nR0/VugoejTNoC2pnkoEaUoHD0CWz5a4lZK9Y7/PK[/tex][tex=6.429x1.286]TQy6C1PKSbKwypnb0bA6hicBRUdimX4Ne9XMAriNoQVEVGVJv154kQsxYjNiMGA0[/tex],由第一个方程解得[tex=1.857x1.286]Wp7fDt88VGMulqwqm8sMkDaDnGV7m8qQEym9kY1azSI=[/tex][tex=7.643x2.357]dXodChC+VURWkzpb15FN0Q+5qzinsnZ78npSNYtMtVRuOeky//64n7M/Zy3xf4Bn[/tex][tex=5.571x1.286]HzSChCPB/AUhmbAI92DavR6maozN1rx2mHG+VPAeHWo=[/tex],代入第二个方程得[tex=8.357x1.286]Ei2PZQl92La73hUrygebc4ErKYYSQCcAMJiFCIpXTulOZdIaJuAXuKAKXIUlBefv[/tex][tex=4.714x1.286]eOWc807T93otiqIVFxZf+wR4j/0GrXDnqq75neHRUck=[/tex] .

    内容

    • 0

      输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

    • 1

      以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)

    • 2

      求方程 [tex=6.571x1.286]RE2bk3+CsDGSzBzc2NjkwZGr3qJ45sCUukgLSZUPdfY=[/tex]所确定的隐函数[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex] 的二阶导数。

    • 3

      求方程[tex=7.143x1.286]rhr0y16qUlOgXhsFYHCPn6CaTdXeID9fSVrJWHwYrnk=[/tex]所确定的隐函数[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的二阶导数。

    • 4

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?