设 $y=\tan x^2$,则 $y'=$( ).
A: $\sec x^2$
B: $\sec^2 x^2$
C: $2x\sec^2 x$
D: $2x\sec^2 x^2$
A: $\sec x^2$
B: $\sec^2 x^2$
C: $2x\sec^2 x$
D: $2x\sec^2 x^2$
举一反三
- 3. 已知函数$y= \tan x$,则$y''(x) =$( )。 A: $ - \sec ^ 2 x \tan x$ B: $ \sec ^ 2 x \tan x$ C: $ - 2 \sec ^ 2 x \tan x$ D: $2 \sec ^2 x \tan x$
- 函数\(y = \sin{x^2}\)的导数为( ). A: \( - 2x\sec {x^4}\) B: \(2x\cos {x^2}\) C: \(2x\sec {x^2}\) D: \(- 2x\sec {x^2}\)
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______
- 已知\( y = \tan x \),则\( y' \)为( ). A: \( - \cos x \) B: \( - \sin x \) C: \( {\sec ^2}x \) D: \( \sec x \)