\( {\sec ^2}x - {\tan ^2}x = \)______. ______
举一反三
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______
- 设 $y=\tan x^2$,则 $y'=$( ). A: $\sec x^2$ B: $\sec^2 x^2$ C: $2x\sec^2 x$ D: $2x\sec^2 x^2$
- \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)
- \( \int {\sec x(\sec x - \tan x)dx} = \)( ) A: \( \tan x - \sec x + C \) B: \( \tan x + \sec x + C \) C: \(- \tan x - \sec x + C \) D: \(- \tan x + \sec x + C \)